
University of M’sila 

Department of Computer Science 

 

 
 

Machine Learning Models Chapter 2 : Linear Regression 

 

Lab #1 : Simple Linear Regression 

Objectives : learn how to build a machine learning model in python using a simple linear 

regression algorithm  

Exercise #1 

Type this python code and tell what does it do. 
 

import numpy as np 

from sklearn.linear_model import LinearRegression 

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) 

 

# y = 1 * x_0 + 2 * x_1 + 3 

 

y = np.dot(X, np.array([1, 2])) + 3 

reg = LinearRegression().fit(X, y) 

reg.score(X, y) 

# it should return 1.0 

 

reg.coef_ 

# it should return array([1., 2.]) 

 

reg.intercept_ 

# it should return 3.0... 

 

reg.predict(np.array([[3, 5]])) 

# it should return array([16.]) 

 

Exercise #2 

Consider the Advertising sales channel prediction data. 

TV Radio Newspaper Sales 

230.1 37.8 69.2 22.1 

44.5 39.3 45.1 10.4 

17.2 45.9 69.3 12.0 

151.5 41.3 58.5 16.5 

180.8 10.8 58.4 17.9 

8.7 48.9 75.0 7.2 

57.5 32.8 23.5 11.8 

‘Sales’ is the target variable that needs to be predicted. Now, based on this data, our objective 

is to create a predictive model, that predicts sales based on the money spent on different 

platforms for marketing. 

Step 1: Importing Python Libraries 

Here are the important libraries that we will be needing for this linear regression. 



Lab #1 : Simple Linear Regression 
 

 

 NumPy (to perform certain mathematical operations) 

 pandas (to store the data  in a pandas DataFrames) 

 matplotlib.pyplot (you will use matplotlib to plot the data) 

In order to load these, just start with these few lines of codes in your first cell: 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

Step 2: Loading the Dataset 

Let us now import data into a DataFrame. A DataFrame is a data type in Python. The simplest 

way to understand it would be that it stores all your data in tabular format. 

advertising = pd.read_csv( "advertising.xls" ) 

advertising.head() 

 

 

Step 3: Visualization 

Let us plot the scatter plot for target variable vs. predictor variables in a single plot to get the 

intuition. Also, plotting a heatmap for all the variables, 

#Importing seaborn library for visualizations 

import seaborn as sns 

#to plot all the scatterplots in a single plot 

sns.pairplot(advertising, x_vars=[ 'TV', 'Newspaper','Radio' ], y_vars = 

'Sales', size = 4, kind = 'scatter' ) 

plt.show() 

#To plot heatmap to find out correlations 

sns.heatmap( advertising.corr(), annot = True ) 

plt.show() 



Lab #1 : Simple Linear Regression 
 

 

 

From the scatterplot and the heatmap, we can observe that ‘Sales’ and ‘TV’ have a higher 

correlation as compared to others because it shows a linear pattern in the scatterplot as well as 

giving 0.9 correlation. 

Step 4: Performing Simple Linear Regression 

Here, as the TV and Sales have a higher correlation we will perform the simple linear 

regression for these variables. 

We first assign the feature variable, `TV`, during this case, to the variable `X` and the 

response variable, `Sales`, to the variable `y`. 

X = advertising[ 'TV' ] 

y = advertising[ 'Sales' ] 

And after assigning the variables you need to split our variable into training and testing sets. You’ll 

perform this by importing train_test_split from the sklearn.model_selection library. It is 

usually a good practice to keep 70% of the data in your train dataset and the rest 30% in your test 

dataset. 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( X, y, train_size = 

0.7, test_size = 0.3, random_state = 100 ) 

In this way, you can split the data into train and test sets. 

One can check the shapes of train and test sets with the following code, 

print( X_train.shape ) 

print( X_test.shape ) 



Lab #1 : Simple Linear Regression 
 

 
print( y_train.shape ) 

print( y_test.shape ) 

importing LinearRegression library from sklearn.linear_model to perform linear regression 

from sklearn.linear_model import LinearRegression 

 

There’s one small step that we need to add, though. When there’s only a single feature, we 

need to add an additional column in order for the linear regression fit to be performed 

successfully. Code is given below, 

X_train_lm = X_train.values.reshape(-1,1) 

X_test_lm = X_test.values.reshape(-1,1) 

One can check the change in the shape of the above data frames. 

print(X_train_lm.shape) 

print(X_test_lm.shape) 

Launch the training 

model = LinearRegression().fit(X_train_lm, y_train) 

Print the training score 

coeff_train = model.score(X_train_lm, y_train) 

print(f"Coefficient de détermination R² en train : {coeff_train:.2f}") 

Print the test score 

coeff_test = model.score(X_test_lm, y_test) 

print(f"Coefficient de détermination R² en test : {coeff_test:.2f}") 

You can get the intercept and slope values with sklearn using the following code, 

#get intercept 

print(model.intercept_ ) 

#get slope 

print(model.coef_) 

 

Visualising the Training set results 

 

plt.scatter(X_train_lm,y_train,color='red') 

plt.plot(X_train_lm,model.predict(X_train_lm),color='blue') 

plt.title("Simple Linear Regression on Training Data") 

plt.xlabel("TV") 

plt.ylabel("Sales") 

plt.show() 



Lab #1 : Simple Linear Regression 
 

 

Apart from `sklearn`, there is another package namely `statsmodels` that can be used to 

perform linear regression. We will use the `statsmodels` library to build the model. Since we 

have already performed a train-test split, we don’t need to do it again. 

importing statmodels library to perform linear regression 

import statsmodels.api as sm 

By default, the statsmodels library fits a line on the dataset which passes through the origin. 

But in order to have an intercept, you need to manually use the add_constant attribute 

of statsmodels. And once you’ve added the constant to your X_train dataset, you can go 

ahead and fit a regression line using the OLS (Ordinary Least Squares) the attribute 

of statsmodels as shown below, 

# Add a constant to get an intercept 

X_train_sm = sm.add_constant(X_train) 

# Fit the resgression line using 'OLS' 

lr = sm.OLS(y_train, X_train_sm).fit() 

One can see the values of betas using the following code, 

# Print the parameters,i.e. intercept and slope of the regression line 

obtained 

lr.params 

 

Here, 6.948 is the intercept, and 0.0545 is a slope for the variable TV. 

Now, let’s see the evaluation metrics for this linear regression operation. You can simply 

view the summary using the following code, 

#Performing a summary operation lists out all different parameters of the 

regression line fitted 

print(lr.summary()) 



Lab #1 : Simple Linear Regression 
 

 

 

As you can see, this code gives you a brief summary of the linear regression. Here are some 

key statistics from the summary: 

1. The coefficient for TV is 0.054, with a very low p-value. The coefficient is 

statistically significant. So the association is not purely by chance. 

2. R – squared is 0.816 Meaning that 81.6% of the variance in `Sales` is explained by 

`TV`. This is a decent R-squared value. 

3. F-statistics has a very low p-value(practically low). Meaning that the model fit is 

statistically significant, and the explained variance isn’t purely by chance. 

 Step 5: Performing predictions on the test set 

Now that you have simply fitted a regression line on your train dataset, it is time to make 

some predictions on the test data. For this, you first need to add a constant to the X_test data 

like you did for X_train and then you can simply go on and predict the y values 

corresponding to X_test using the predict the attribute of the fitted regression line. 

# Add a constant to X_test 

X_test_sm = sm.add_constant(X_test) 

# Predict the y values corresponding to X_test_sm 

y_pred = lr.predict(X_test_sm) 

You can see the predicted values with the following code, 

y_pred.head() 



Lab #1 : Simple Linear Regression 
 

 

 

To check how well the values are predicted on the test data we will check some evaluation 

metrics using sklearn library. 

#Imporitng libraries 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import r2_score 

#RMSE value 

print( "RMSE: ",np.sqrt( mean_squared_error( y_test, y_pred ) ) 

#R-squared value 

print( "R-squared: ",r2_score( y_test, y_pred ) ) 

 

We are getting a decent score for both train and test sets. 

 


