Chapter 01 (part 01). Topological spaces

Abdelaziz Hellal abdelaziz.hellal@univ-msila.dz

Introduction to Topology for Second Class License Academic Tuesday 15th October, 2024

Contents

Topological Spaces: Definitions and Examples

2 Hausdorff Spaces

3 Continuity in topological spaces

4 Subspace Topologies and Topological Products

Topological space

Definition – Topology

A topology τ on a set X is a collection of subsets of X, called open sets, satisfying the following axioms:

- 1. \emptyset and X are open sets (i.e. $\emptyset, X \in \tau$).
- 2. The intersection of two open sets is an open set (i.e. $O_1 \cap O_2 \in \tau$).
- **3.** The union of any number of open sets is an open set (i.e. $\cup_i O_i \in \tau$).
- Condition 2 implies that any finite intersection of open sets is still an open set.
- A topological space (X, τ) consists of a set X and a topology τ .
- □ i.e. A set equipped with a topology is called a topological space. Its elements are called points.

H. Abdelaziz []

Introduction to Topology for Second Class License Academic

Examples of topological spaces

- □ The trivial (indiscrete) topology on a set X is defined as the topology which consists of the subsets Ø and X only (i.e. τ = {Ø, X})).
- □ The discrete topology on a set X is defined as the topology which consists of all possible subsets of X (i.e. $\tau = \mathcal{P}(X)$).
- □ In the Euclidean (standard) topology on \mathbb{R} , a subset $U \subset \mathbb{R}$ is open if and only if it is the union of open intervals.
- □ The upper topology on \mathbb{R} is defined as the one having $] \infty, \alpha[$, with $\alpha \in \mathbb{R} \bigcup \{+\infty\}$ as non-empty open sets.

Closed sets

Definition – Closed set

Let X be a topological space. A subset $Z \subset X$ is called closed if X - Z is open.

Main facts about closed sets

- 1. \emptyset and X are are closed (i.e. $X \emptyset = X, X X = \emptyset \in \tau$).
- 2. Any intersection of closed sets is closed.
- 3. The union of two closed sets is closed.
- If a subset Z ⊂ X is closed in X, then every sequence of points of Z that converges must converge to a point of Z.

Closure of a set

Definition – Closure

Let X be a topological space and assume that $D \subset X$. The closure \overline{D} of D is defined as the smallest closed set that contains D. It is thus the intersection of all closed sets that contain D.

Main facts about the closure

- **1.** One has $D \subset \overline{D}$ for any set D.
- **2.** If $D \subset Z$, then $\overline{D} \subset \overline{Z}$ as well.
- **3.** The set *D* is closed if and only if $\overline{D} = D$.
- **4.** The closure of \overline{D} is itself, namely $\overline{D} = \overline{D}$.

The interval
$$I = [-1, 2)$$
 has closure $\overline{I} = [-1, 2]$.

□ The interval I = (-1, 2) has closure $\overline{I} = [-1, 2]$.

H. Abdelaziz []

Introduction to Topology for Second Class License Academic

Interior of a set

Definition – Interior

Let X be a topological space and let $D \subset X$. The interior D° of D is defined as the largest open set contained in D. It is thus the union of all open sets contained in D.

Main facts about the interior

- **1.** One has $D^{\circ} \subset D$ for any set D.
- **2.** If $D \subset Z$, then $D^{\circ} \subset Z^{\circ}$ as well.
- **3.** The set *D* is open if and only if $D^{\circ} = D$.
- **4.** The interior of D° is itself, namely $D^{\circ \circ} = D$.
- \Box The interval I = [0, 1] has interior $I^{\circ} = (0, 1)$.
- □ The interval I = [0, 1) has interior $I^{\circ} = (0, 1)$.

Boundary of a set

Definition – Boundary

Let X be a topological space and suppose that $D \subset Xt$. The boundary of D is defined as the set

$$\partial D = \overline{D} - D^{\circ} = \overline{D} \cap \overline{X - D}$$

For the Euclidean topology on the real line $\mathbb R$ we have

- □ The boundary of I = [0, 1], $\partial I = \overline{I} I^\circ = \overline{I} \cap \overline{\mathbb{R} I} = \{0, 1\}$.
- $\Box \text{ The boundary of } I = [0,1), \ \partial I = \overline{I} I^{\circ} = \overline{I} \cap \overline{\mathbb{R} I} = \{0\}.$
- Notice that a subset and its complement have the same boundary.

Neighbourhoods

Definition – Neighbourhood

Let X be a topological space and let $x \in X$ be an arbitrary point. A neighbourhood of x is simply an open set that contains x.

Theorem - Characterisation of closure/interior/boundary Let X be a topological space. Assume that $D \subset X$ is a subset. **1.** $x \in \overline{D} \iff$ every neighbourhood of x intersects D. **2.** $x \in D^{\circ} \iff$ some neighbourhood of x lies within D. **3.** $x \in \partial D \iff$ every neighbourhood of x intersects D and X - D. **4.** One has $D^{\circ} \cap \partial D = \emptyset$ and $D^{\circ} \cup \partial D = \overline{D}$ for every D.

Interior, closure and boundary: examples

Set	Interior	Closure	Boundary
{3}	Ø	{3}	{3}
[1, 4)	(1,4)	[1, 4]	$\{1, 4\}$
$(-1,2) \cup (2,3)$	$(-1,2)\cup(2,3)$	[-1, 3]	$\{-1, 2, 3\}$
$[-1,2]\cup\{3\}$	(-1, 2)	$[-1,2] \cup \{3\}$	$\{-1, 2, 3\}$
\mathbb{Z}	Ø	Z	\mathbb{Z}
Q	Ø	\mathbb{R}	\mathbb{R}
\mathbb{R}	$\mathbb R$	\mathbb{R}	Ø

Convergence of sequences

Definition – Convergence

Let (X, τ) be a topological space. A sequence $(x_n)_n$ of points of X is said to converge to the point $x \in X$ if, given any open set U that contains x, there exists an integer q such that $x_n \in U$ for all $n \ge q$.

□ When a sequence (x_n) converges to a point x, we say that x is the limit of the sequence and we write x_n → x as n → +∞ or simply

$$\lim_{x_n \longrightarrow x} x_n = x$$

Theorem - Limits are not necessarily unique

Assume that X has the indiscrete topology and let $x \in X$. Then the constant sequence $x_n = x$ converges to y for every $y \in X$.

.

Accumulation point vs Limit point

Definition – Limit point

Let X be a topological space and Suppose that $D \subset X$. We say that x is a limit point of D if every neighbourhood of x intersects D at a point other than x.

Theorem - Limit points and closure

Let X be a topological space and let $D \subset X$. If D' is the set of all limit points of D, then the closure of D is

$\overline{D} = D \cup D'$

Every limit of a non-constant sequence is an accumulation point of the sequence.

Limit points

- □ A set is closed if and only if it contains its limit points.
- □ A sequence accumulates at x means that x is a limit point. If a sequence converges to x then it also accumulates to x, so x is a limit point; the converse is generally false.
- □ Intuitively, limit points of *D* are limits of sequences of points of *D*.
- □ Every point of D = (0,3) is a limit point of D, while D' = [0,3].
- □ The set $D = \{\frac{1}{n^2}, n \in \mathbb{N}\}$ has only one limit point, namely x = 0.

Hausdorff Space

Definition – Hausdorff space

Let (X, τ) be a topological space. We say that (X, τ) is Hausdorff if any two distinct points of X have neighbourhoods which do not intersect.

- □ If a space X endowed with the discrete topology, then X is Hausdorff.
- □ If a space X equipped with the indiscrete topology and it contains two or more elements, then X is not Hausdorff.

Theorem – Main facts about Hausdorff spaces

- 1. A convergent sequence in a Hausdorff space has a unique limit.
- 2. Every subset of a Hausdorff space is Hausdorff.
- 3. Every finite subset of a Hausdorff space is closed.
- 4. The product of two Hausdorff spaces is Hausdorff.

Continuous Maps

Definition – Continuity

A function $f: X \longrightarrow Y$ between topological spaces is called continuous if $f^{-1}(U)$ is open in X for each set U which is open in Y.

Theorem - Composition of continuous functions

Suppose $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ are continuous functions between topological spaces. Then the composition $g \circ f: X \longrightarrow Z$ is continuous.

Theorem - Continuity and sequences

Let $f: X \longrightarrow Y$ be a continuous function between topological spaces and let (x_n) be a sequence of points of X which converges to $x \in X$. Then the sequence $(f(x_n))_n$ must converge to f(x).

Definition – Homeomorphism

A function $f: X \longrightarrow Y$ between topological spaces is a homeomorphism if f is bijective, continuous and its inverse f^{-1} is continuous. When such a function exists, we say that X and Y are

homeomorphic.

Subspace Topologies

Definition – Subspace topology Let (X, τ) be a topological space and let $D \subset X$. Then the set $\tau' = \{U \cap D, U \in \tau\}$

forms a topology on D which is known as the subspace topology.

Theorem - Inclusion maps are continuous

Let (X, τ) be a topological space and let $D \subset X$. Then the inclusion map $I: D \longrightarrow X$ which is defined by I(x) = x is continuous.

Theorem - Restriction maps are continuous

Let $f: X \longrightarrow Y$ be a continuous function between topological spaces and let $D \subset X$. Then the restriction map $h: D \longrightarrow Y$ which is defined by h(x) = f(x) is continuous. This map is often denoted by h = f/D.

H. Abdelaziz []

Introduction to Topology for Second Class License Academic

Product topology

Definition – Product topology

Given two topological spaces (X, τ) and (X, τ') , we define the product topology on $X \times Y$ as the collection (open sets) of all unions $\bigcup_{i,j} (O_i \times O_j)$, where each O_i is open in X and each O_j is open in Y.

Theorem - Restriction maps are continuous

Let (X, τ) , (Y, τ') , and (Z, τ'') be topological spaces. Then a function $f: Z \longrightarrow X \times Y$ is continuous if and only if its components $p_1 \circ f$ and $p_2 \circ f$ are continuous when the projection map $p_1: X \times Y \longrightarrow X$ defined by $p_1(x, y) = x$, and the projection map $p_2: X \times Y \longrightarrow Y$ defined by $p_2(x, y) = y$ are continuous.

Questions are welcome.

H. Abdelaziz []

Introduction to Topology for Second Class License Academic

2024-10-15