University of Mohamed Boudiaf-M'sila L2-S03 : Topological Spaces

Faculty of Mathematics and Computer Science Key Answers Series-01

 $\textbf{Department of Mathematics} \qquad \qquad \textbf{Year: 2024-2025}$

Module: Introduction to Topology

Exercice 01 : $E = \{a, b, c, d\}$.

- 1. We determine the topologies among the following families:
 - i) $\tau_1 = \{\emptyset, E, \{a\}, \{c, d\}, \{a, c, d\}\}$:
 - *) \emptyset , $E \in \tau_1$,
 - **) $\forall \mathcal{O} \in \tau_1 : \emptyset \cap \mathcal{O} = \emptyset \in \tau_1, E \cap \mathcal{O} = \mathcal{O} \in \tau_1$
 - $\{a\} \cap \{c,d\} = \emptyset \in \tau_1, \ \{a\} \cap \{a,c,d\} = \{a\} \in \tau_1, \{c,d\} \cap \{a,c,d\} = \{c,d\} \in \tau_1$
 - $***) \forall \mathcal{O} \in \tau_1 : \emptyset \cup \mathcal{O} = \mathcal{O} \in \tau_1, E \cup \mathcal{O} = E \in \tau_1, \{a\} \cup \{c,d\} = \{a,c,d\} \in \tau_1,$
 - ${a} \cup {a, c, d} = {a, c, d} \in \tau_1, {c, d} \cup {a, c, d} = {a, c, d} \in \tau_1,$

So, τ_1 is a topology.

ii) $\tau_2 = \{\emptyset, E, \{a\}, \{c, d\}, \{b, c, d\}\}$:

We have $\{a\} \cup \{c,d\} = \{a,c,d\} \notin \tau_1$. Thus τ_2 is not a topology.

- iii) $\tau_3 = \{\emptyset, E, \{a\}, \{a, b\}, \{a, b, c\}\}$:
- *) \emptyset , $E \in \tau_3$,
- **) $\forall \mathcal{O} \in \tau_3 : \emptyset \cap \mathcal{O} = \emptyset \in \tau_3, E \cap \mathcal{O} = \mathcal{O} \in \tau_3,$
- $\{a\} \cap \{a,b\} = \{a\} \in \tau_3, \ \{a\} \cap \{a,b,c\} = \{a\} \in \tau_3, \{a,b\} \cap \{a,b,c\} = \{a,b\} \in \tau_3$
- $***) \forall \mathcal{O} \in \tau_3 : \emptyset \cup \mathcal{O} = \mathcal{O} \in \tau_3, E \cup \mathcal{O} = E \in \tau_3, \{a\} \cup \{a,b\} = \{a,b\} \in \tau_3,$
- $\{a\} \cup \{a,b,c\} = \{a,b,c\} \in \tau_3, \{a,b\} \cup \{a,b,c\} = \{a,b,c\} \in \tau_3,$

Hence, τ_3 is a topology.

2. The closed sets of the topology τ_1 are $\{\emptyset, E, \{b, c, d\}, \{a, b\}, \{a\}\}$.

The closed sets of the topology τ_3 are $\{\emptyset, E, \{b, c, d\}, \{c, d\}, \{d\}\}$.

Exercise 02: $a \in \mathbb{R}, I_{\alpha} =]\alpha, +\infty[, \tau = {\emptyset, \mathbb{R}, I_{\alpha}(\alpha \in \mathbb{R})}.$

- 1. Show that (\mathbb{R}, τ) is a topological space :
 - *) \emptyset , $\mathbb{R} \in \tau$,
 - **) $\forall \mathcal{O} \in \tau : \emptyset \cap \mathcal{O} = \emptyset \in \tau, \mathbb{R} \cap \mathcal{O} = \mathcal{O} \in \tau$,

Let
$$\{I_{\alpha_i}\}_{1 \leq i \leq n} \subset \tau$$
. We put $\alpha = \max_{1 \leq i \leq n} \alpha_i$. We have $: \bigcap_{i=1}^n I_{\alpha_i} = I_{\alpha} \in \tau$.

 $***) \forall \mathcal{O} \in \tau : \emptyset \cup \mathcal{O} = \mathcal{O} \in \tau, \mathbb{R} \cup \mathcal{O} = \mathbb{R} \in \tau,$

Let $\{I_{\alpha_i}\}_{i\in I} \subset \tau$. We set $\alpha = \min_{i\in I} \alpha_i$.

If
$$\alpha = -\infty$$
 then we find $\bigcup_{i \in I} I_{\alpha_i} = \mathbb{R} \in \tau$ If $\alpha > -\infty$ then we get $\bigcup_{i=1}^n I_{\alpha_i} = I_{\alpha} \in \tau$

Hence (\mathbb{R}, τ) is a topological space.

2. We have $\emptyset \in (\mathbb{R}, |.|), \mathbb{R} \in (\mathbb{R}, |.|)$, and for $I_{\alpha} \in \tau$ is an interval, then $I_{\alpha} \in (\mathbb{R}, |.|)$. We obtain $\tau \subset (\mathbb{R}, |.|)$. Therefore τ is coarser, weaker, or smaller than \mathbb{R} .

Exercice 03:
$$E = \{a, b, c\}, \tau = \{\emptyset, E, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}.$$

- 1. Show that τ is a topology:
 - *) $\emptyset, E \in \tau$,

**) $\forall \mathcal{O} \in \tau : \emptyset \cap \mathcal{O} = \emptyset \in \tau, E \cap \mathcal{O} = \mathcal{O} \in \tau, \{a\} \cap \{b\} = \emptyset \in \tau, \{a\} \cap \{a,b\} = \{a\} \in \tau, \{a\} \cap \{a\} \cap \{a\} \cap$ $\{a\} \cap \{a,c\} = \{a\} \in \tau, \{b\} \cap \{a,b\} = \{b\} \in \tau, \{b\} \cap \{a,c\} = \emptyset \in \tau, \{a,b\} \cap \{a,c\} = \{a\} \cap \{a,c\} = \{a\} \cap \{a,c\} = \{a\} \cap \{a,c\} = \{a\} \cap \{a\} \cap$

 $***) \forall \mathcal{O} \in \tau : \emptyset \cup \mathcal{O} = \mathcal{O} \in \tau, E \cup \mathcal{O} = E \in \tau, \{a\} \cup \{b\} = \{a,b\} \in \tau, \{a\} \cup \{a,b\} \{a,$ $\{a,b\} \in \tau$,

 $\{a\} \cup \{a,c\} = \{a,c\} \in \tau, \{b\} \cup \{a,b\} = \{a,b\} \in \tau, \{b\} \cup \{a,c\} = E \in \tau, \{a,b\} \cup \{a,c\} = E$ $E \in \tau$

Thus τ is a topology.

2. $C_E^{\{a\}} = \{b, c\} \notin \tau, C_E^{\{a, b\}} = \{c\} \notin \tau$. Hence $\{a\}, \{a, b\}$ are not closed sets.

Exercice 04: $\tau = \{\emptyset, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z}, \mathbb{R}\}, D = \{3, \sqrt{3}\}.$

1. i) $\mathcal{V}(D) = \{V \subset \mathbb{R}; \exists \mathcal{O} \in \tau : D \subset \mathcal{O} \subset V\}$. The open sets that containing D are : $\mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z}, \mathbb{R},$

but, we have : $\mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N} \subset \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z} \subset \mathbb{R}$. Hence, $\mathcal{V}(D) = \{V \subset \mathbb{R} : \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N} \subset V\}$. ii) $D' = \{x \in D, \forall V \in \mathcal{V}(x); V \cap (\underline{D} \setminus \{x\}) \neq \emptyset\}$.

* If x=3, one has $D\setminus\{x\}=\{\sqrt{3}\}$, and one has $\mathbb{N}\in\mathcal{V}(x)$ but, $\mathbb{N}\cap(D\setminus\{x\})=\emptyset$. Thus, $3 \notin D'$.

* If $x = \sqrt{3}$, we have $D \setminus \{x\} = \{3\}$, in addition we have $\mathbb{Q} \in \mathcal{V}(x)$ but, $\mathbb{Q} \cap (A \setminus \{x\}) = \emptyset$. Then $\sqrt{3} \notin D'$.

* If $x \in \mathbb{Q} \setminus \{3\}$, one has $D \setminus \{x\} = D$, and $\forall v \in \mathcal{V}(x); \cap (D \setminus \{x\}) = \{3\}$. Then, $x \in D'$.

* If $x \in \mathbb{R} \setminus (\mathbb{Q} \cup \{\sqrt{3}\})$, we get $D \setminus \{x\} = D$, and $\forall v \in \mathcal{V}(x)$; $\cap (D \setminus \{x\}) = \{\sqrt{3}\}$. We find $x \in D'$.

Moreover; $D' = \mathbb{R} \setminus D$.

iii)
$$\overline{D} = D \cup D' = \mathbb{R}$$
, and $\overset{0}{D} = \emptyset$, hence, $\mathcal{F}r(D) = \overline{D} \setminus \overset{0}{D} = \mathbb{R}$, and $\mathcal{E}xt(D) = \emptyset$.

2. $\overline{D} = \mathbb{R}$. Thus, D is dense in \mathbb{R} .

Conclusion: D is countable and everywhere dense in \mathbb{R} . Hence; (\mathbb{R}, τ) is separable.

3. $\tau_{\mathbb{Z}} = \{\emptyset, \mathbb{N}, \mathbb{Z}\}$ and $Trivial_{\mathbb{Z}} = \{\emptyset, \mathbb{Z}\}$. So, the topology $\tau_{\mathbb{Z}}$ is finer than $Trivial_{\mathbb{Z}}$.

Exercice 05: Determine the interior and the closure in $(\mathbb{R}, |\cdot|)$:

$$A = \{-1 + \frac{1}{n}, n \in \mathbb{N}^*\} : \overset{0}{A} = \emptyset, \ \overline{A} = A \cup \{-1\}.$$

$$B =]-1,1[\cup\{2\}\cup[3,4[:\stackrel{0}{B}=]-1,1[\cup]3,4[\;,\;\overline{B}=[-1,1]\cup\{2\}\cup[3,4].$$

$$C = \{x \in \mathbb{R} : x^2 \le 4\} \cap [1, 5[: C = [1, 2] , \overset{0}{C} =]1, 2[, \overline{C} = [1, 2].$$

$$D = \mathbb{Q} \cap [-1, 1] , \overset{0}{D} = \emptyset , \overline{D} = [-1, 1].$$

Exercice 06 : $\triangle = \{(x; x) : x \in E\}$

 \implies Suppose that \triangle is a closed set of E^2 , so $\Omega = C_{E^2}^{\triangle}$ is an open set of E^2 . let $x, y \in E^2$ be such that $x \neq y$, then $(x,y) \in \Omega$ and Ω is a neighborhood of (x,y), $\exists V_x \in \mathbf{V}(x), \exists V_y \in \mathbf{V}$ $\mathbf{V}(y): V_x \times V_y \subset \Omega$, hence $V_x \cap V_y = \emptyset$.

 \longleftarrow Let $(x,y) \in \Omega$, we have $x \neq y$, then $\exists V_x \in \mathbf{V}(x), \exists V_y \in \mathbf{V}(y) : V_x \cap V_y = \emptyset$. So $V_x \times V_y \subset \Omega$. i.e. $\Omega \in \mathbf{V}(x,y), \quad \forall (x,y) \in \Omega$, we deduce $\Omega = C_{E^2}^{\triangle}$ is an open of E^2 . i.e. \triangle is closed.

Exercice 07:

$$\forall f, g \in E : d(f,g) = |f(0) - g(0)| + \int_0^1 |f(t) - g(t)| dt$$

- 1. Show that d is a distance on E:
 - Positive : $d \ge 0$ (Obvious).

Let $f, g \in E$.

$$d(f,g) = 0 \Leftrightarrow |f(0) - g(0)| = 0 \land \int_0^1 |f(t) - g(t)| dt = 0 \Leftrightarrow |f(t) - g(t)| = 0, \forall t \in [0,1].$$

$$\Leftrightarrow f(t) = g(t), \forall t \in [0,1].$$

- Symmetry : Obvious.
- Triangle inequality : Let $f, g, h \in \mathbb{R}$. Then;

$$d(f,h) = |f(0) - h(0)| + \int_0^1 |f(t) - h(t)| dt$$

$$\leq |f(0) - g(0)| + \int_0^1 |f(t) - g(t)| dt + |g(0) - h(0)| + \int_0^1 |g(t) - h(t)| dt$$

$$= d(f,g) + d(g,h)$$

So, d is a distance on E.

2. Elements of the unit ball in $(E,d): x, x^2, \sqrt{x}, x^{\alpha} (\alpha \in \mathbb{Q}^+)$.

Exercice 08:

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}, f : \overline{\mathbb{R}} \to [-1, 1] \text{ such that } :$

$$f(x) = \begin{cases} -1 & : x = -\infty \\ \frac{x}{1+|x|} & : x \in \mathbb{R} \\ 1 & : x = +\infty \end{cases}$$

- *) Let us show that d(x,y) = |f(x) f(y)| defines a distance on $\overline{\mathbb{R}}$: We must show that f is bijective.
 - Positive : $d \ge 0$ (Obvious).

Soit $x, y \in \overline{\mathbb{R}}$.

$$d(x,y) = 0 \Leftrightarrow |f(x) - f(y)| = 0$$

 $\Leftrightarrow f(x) = f(y)$
 $\Leftrightarrow x = y \text{ (since } f \text{ est bijective)}$

- Symmetry : Obvious.
- Triangle inequality : Obvious
- **) $B(0,1) = \{x \in \overline{\mathbb{R}} : d(0,x) < 1\} = \mathbb{R}.$
- ***) $\overline{B}(0,1) = \{x \in \overline{\mathbb{R}} : d(0,x) \le 1\} = \overline{\mathbb{R}}.$

Exercice 09:

$$-U=\{-x:x\in U\} \qquad \lambda U=\{\lambda x:x\in U\} \; (\lambda\in\mathbb{R}^*) \qquad a+U=\{a+x:x\in U\} \; (a\in\mathbb{R}) \;$$
 Montrer que :

1. \Rightarrow Let $x \in -U$. Hence : $-x \in U$. Then, there exists r > 0 such that $B(-x, r) = |-x - r, -x + r| \subset U$.

Thus; $]x-r,x+r[\subset -U, \text{ i.e. } -U \text{ is open.}]$

 $\Leftarrow -U$ open $\Rightarrow U = -(-U)$ open.

2. \Rightarrow Assume that $\lambda > 0$ and let $x \in \lambda U$. Thus, $\frac{x}{\lambda} \in U$. Then, there exists r > 0 such that $\frac{x}{\lambda} - r, \frac{x}{\lambda} + r \subset U$.

Hence; $]x - \hat{\lambda}r, x + \lambda r[\subset U, \text{ ie. } \lambda U \text{ is open.}]$

For all $\lambda < 0 : U$ open $\Rightarrow -\lambda U$ open $\Rightarrow \lambda U$ open.

$$\Leftarrow \lambda U \text{ open } \Rightarrow U = \frac{1}{\lambda}(\lambda U) \text{ open.}$$

3. \Rightarrow Let $x \in a+U$. Then, $x-a \in U$. Then, there exists r > 0 such that $]x-a-r, x-a+r[\subset U]$.

Hence, $]x - r, x + r[\subset a + U$, ie. a + U is open.

$$\Leftarrow a + U \text{ open} \Rightarrow U = -a + (a + U) \text{ open.}$$

Exercice 10 : Let $x, y, z \in E$. We have

- 1. $d(x,y) = 0 \iff ||x y|| = 0 \iff x y = 0 \iff x = y$,
- 2. d(x,y) = ||x y|| = |-1|||y x|| = d(y,x),
- 3. $d(x,z) = ||x-z|| = ||x-y+y-z|| \le ||x-y|| + ||y-z|| = d(x,y) + d(y,z),$

Hence, d is a distance on E.

[&]quot;Homework N01 is evaluated out of 5 points, from a total of 20." Mathematics instructor : Abdelaziz Hellal