Exercice 01 : $E = \{a, b, c, d\}.$

1. We determine the topologies among the following families : i) $\tau_1 = \{\emptyset, E, \{a\}, \{c, d\}, \{a, c, d\}\}$: *) $\emptyset, E \in \tau_1$, $\ast\ast$) $\forall \mathcal{O} \in \tau_1 : \emptyset \cap \mathcal{O} = \emptyset \in \tau_1, E \cap \mathcal{O} = \mathcal{O} \in \tau_1$ ${a} \cap {c, d} = \emptyset \in \tau_1, \{a\} \cap {a, c, d} = {a} \in \tau_1, {c, d} \cap {a, c, d} = {c, d} \in \tau_1$ $(***)\ \forall \mathcal{O}\in \tau_1 : \emptyset \cup \mathcal{O} = \mathcal{O}\in \tau_1, E\cup \mathcal{O} = E\in \tau_1, \{a\} \cup \{c,d\} = \{a,c,d\} \in \tau_1,$ ${a} \cup {a, c, d} = {a, c, d} \in \tau_1, {c, d} \cup {a, c, d} = {a, c, d} \in \tau_1,$ So, τ_1 is a topology. ii) $\tau_2 = \{\emptyset, E, \{a\}, \{c, d\}, \{b, c, d\}\}$: We have $\{a\} \cup \{c, d\} = \{a, c, d\} \notin \tau_1$. Thus τ_2 is not a topology. iii) $\tau_3 = \{\emptyset, E, \{a\}, \{a, b\}, \{a, b, c\}\}\;$ *) $\emptyset, E \in \tau_3$, ∗∗) ∀O ∈ τ³ : ∅ ∩ O = ∅ ∈ τ3, E ∩ O = O ∈ τ3, ${a} \cap {a,b} = {a} \in \tau_3, \{a\} \cap {a,b,c} = {a} \in \tau_3, \{a,b\} \cap {a,b,c} = {a,b} \in \tau_3$ $(* **) \forall \mathcal{O} \in \tau_3 : \emptyset \cup \mathcal{O} = \mathcal{O} \in \tau_3, E \cup \mathcal{O} = E \in \tau_3, \{a\} \cup \{a, b\} = \{a, b\} \in \tau_3,$ ${a} \cup {a, b, c} = {a, b, c} \in \tau_3, {a, b} \cup {a, b, c} = {a, b, c} \in \tau_3,$ Hence, τ_3 is a topology.

2. The closed sets of the topology τ_1 are $\{\emptyset, E, \{b, c, d\}, \{a, b\}, \{a\}\}.$ The closed sets of the topology τ_3 are $\{\emptyset, E, \{b, c, d\}, \{c, d\}, \{d\}\}.$

Exercice $02 : a \in \mathbb{R}, I_{\alpha} = |\alpha| + \infty, \tau = \{ \emptyset, \mathbb{R}, I_{\alpha} (\alpha \in \mathbb{R}) \}.$

- 1. Show that (\mathbb{R}, τ) is a topological space: $*$) $\emptyset, \mathbb{R} \in \tau$, ∗∗) ∀O ∈ τ : ∅ ∩ O = ∅ ∈ τ, R ∩ O = O ∈ τ, Let $\{I_{\alpha_i}\}_{1 \leq i \leq n} \subset \tau$. We put $\alpha = \max_{1 \leq i \leq n} \alpha_i$. We have : $\bigcap_{n=1}^n$ $i=1$ $I_{\alpha_i} = I_{\alpha} \in \tau.$ $(**)\forall \mathcal{O}\in \tau:\emptyset\cup\mathcal{O}=\mathcal{O}\in \tau,\mathbb{R}\cup\mathcal{O}=\mathbb{R}\in \tau,$ Let $\{I_{\alpha_i}\}_{i\in I} \subset \tau$. We set $\alpha = \min_{i\in I} \alpha_i$. If $\alpha = -\infty$ then we find $| \ \ |$ i∈I $I_{\alpha_i} = \mathbb{R} \in \tau$ If $\alpha > -\infty$ then we get \bigcup^n $i=1$ $I_{\alpha_i} = I_{\alpha} \in \tau$ Hence (\mathbb{R}, τ) is a topological space.
- 2. We have $\emptyset \in (\mathbb{R}, |.|), \mathbb{R} \in (\mathbb{R}, |.|),$ and for $I_{\alpha} \in \tau$ is an interval, then $I_{\alpha} \in (\mathbb{R}, |.|).$ We obtain $\tau \subset (\mathbb{R}, |.|).$ Therefore τ is coarser, weaker, or smaller than $\mathbb{R}.$

Exercice 03 : $E = \{a, b, c\}, \tau = \{\emptyset, E, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}.$

1. Show that τ is a topology: $*$) $\emptyset, E \in \tau$,

$$
(*) \forall \mathcal{O} \in \tau : \emptyset \cap \mathcal{O} = \emptyset \in \tau, E \cap \mathcal{O} = \mathcal{O} \in \tau, \{a\} \cap \{b\} = \emptyset \in \tau, \{a\} \cap \{a, b\} = \{a\} \in \tau, \{a\} \cap \{a, c\} = \{a\} \in \tau, \{b\} \cap \{a, b\} = \{b\} \in \tau, \{b\} \cap \{a, c\} = \emptyset \in \tau, \{a, b\} \cap \{a, c\} = \{a\} \in \tau, \{b\} \cap \{a, b\} = \{b\} \in \tau, \{b\} \cap \{a, c\} = \emptyset \in \tau, \{a, b\} \cap \{a, c\} = \{a\} \in \tau, \{a\} \cup \mathcal{O} = \mathcal{O} \in \tau, E \cup \mathcal{O} = E \in \tau, \{a\} \cup \{b\} = \{a, b\} \in \tau, \{a\} \cup \{a, b\} = \{a, b\} \in \tau, \{a\} \cup \{a, c\} = \{a, c\} \in \tau, \{b\} \cup \{a, b\} = \{a, b\} \in \tau, \{b\} \cup \{a, c\} = E \in \tau, \{a, b\} \cup \{a, c\} = E \in \tau
$$
\nThus τ is a topology.

2.
$$
C_E^{\{a\}} = \{b, c\} \notin \tau
$$
, $C_E^{\{a,b\}} = \{c\} \notin \tau$. Hence $\{a\}$, $\{a, b\}$ are not closed sets.

Exercice $04: \tau = \{\emptyset, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}}\}$ $\mathcal{C}_{\mathbb{R}}^{\mathbb{Q}}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z}, \mathbb{R} \}, D = \{3,$ 3}.

- 1. i) $V(D) = \{V \subset \mathbb{R}; \exists \mathcal{O} \in \tau : D \subset \mathcal{O} \subset V\}$. The open sets that containing D are : $\mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z}, \mathbb{R},$ but, we have : $\mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N} \subset \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z} \subset \mathbb{R}$. Hence, $\mathcal{V}(D) = \{V \subset \mathbb{R} : \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N} \subset V\}$. ii) $D' = \{x \in D, \forall V \in \mathcal{V}(x); V \cap (D \setminus \{x\}) \neq \emptyset\}.$ * If $x = 3$, one has $D \setminus \{x\} = \{\sqrt{3}\}\$, and one has $\mathbb{N} \in \mathcal{V}(x)$ but, $\mathbb{N} \cap (D \setminus \{x\}) = \emptyset$. Thus, $3 \notin D'$. ^{*} If $x = \sqrt{3}$, we have $D \setminus \{x\} = \{3\}$, in addition we have $\mathbb{Q} \in \mathcal{V}(x)$ but, $\mathbb{Q} \cap (A \setminus \{x\}) = \emptyset$. Then $\sqrt{3} \notin D'$. * If $x \in \mathbb{Q} \setminus \{3\}$, one has $D \setminus \{x\} = D$, and $\forall v \in \mathcal{V}(x)$; $\cap (D \setminus \{x\}) = \{3\}$. Then, $x \in D'$. $\forall x \in \mathbb{Q} \setminus \{3\},\$ one nas $D \setminus \{x\} = D$, and $\forall v \in V(x)$; $\cap (D \setminus \{x\}) = \{3\}$. Then, $x \in D$.

* If $x \in \mathbb{R} \setminus (\mathbb{Q} \cup \{\sqrt{3}\})$, we get $D \setminus \{x\} = D$, and $\forall v \in V(x)$; $\cap (D \setminus \{x\}) = \{\sqrt{3}\}$. We find $x \in D'$. Moreover ; $D' = \mathbb{R} \setminus D$. iii) $\overline{D} = D \cup D' = \mathbb{R}$, and $\overline{D} = \emptyset$, hence, $\mathcal{F}_T(D) = \overline{D} \setminus \overline{D} = \mathbb{R}$, and $\mathcal{E}_{xt}(D) = \emptyset$.
- 2. $\overline{D} = \mathbb{R}$. Thus, D is dense in \mathbb{R} .

Conclusion : D is countable and everywhere dense in $\mathbb R$. Hence ; $(\mathbb R, \tau)$ is separable.

3. $\tau_{\mathbb{Z}} = \{\emptyset, \mathbb{N}, \mathbb{Z}\}\$ and $Trivial_{\mathbb{Z}} = \{\emptyset, \mathbb{Z}\}\$. So, the topology $\tau_{\mathbb{Z}}$ is finer than $Trivial_{\mathbb{Z}}$.

Exercice 05: Determine the interior and the closure in $(\mathbb{R}, |\cdot|)$:

$$
A = \{-1 + \frac{1}{n}, n \in \mathbb{N}^*\} : \overset{0}{A} = \emptyset, \ \overline{A} = A \cup \{-1\}.
$$

\n
$$
B =]-1, 1[\cup \{2\} \cup [3, 4[:\overset{0}{B} =]-1, 1[\cup]3, 4[, \ \overline{B} = [-1, 1] \cup \{2\} \cup [3, 4].
$$

\n
$$
C = \{x \in \mathbb{R} : x^2 \le 4\} \cap [1, 5[:C = [1, 2], \overset{0}{C} =]1, 2[, \ \overline{C} = [1, 2].
$$

\n
$$
D = \mathbb{Q} \cap [-1, 1], \overset{0}{D} = \emptyset, \ \overline{D} = [-1, 1].
$$

\n**Exercise 06 :** $\triangle = \{(x; x) : x \in E\}$

⇒ Suppose that \triangle is a closed set of E^2 , so $\Omega = C_{E^2}^{\triangle}$ is an open set of E^2 . let $x, y \in E^2$ be such that $x \neq y$, then $(x, y) \in \Omega$ and Ω is a neighborhood of (x, y) , $\exists V_x \in \mathbf{V}(x)$, $\exists V_y \in \Omega$ $\mathbf{V}(y) : V_x \times V_y \subset \Omega$, hence $V_x \cap V_y = \emptyset$.

 \Leftarrow Let $(x, y) \in \Omega$, we have $x \neq y$, then $\exists V_x \in \mathbf{V}(x), \exists V_y \in \mathbf{V}(y) : V_x \cap V_y = \emptyset$. So $V_x \times V_y \subset \Omega$. i.e. $\Omega \in \mathbf{V}(x, y), \quad \forall (x, y) \in \Omega$, we deduce $\Omega = C_{E^2}^{\Delta}$ is an open of E^2 . i.e. \triangle is closed.

Exercice 07 :

$$
\forall f, g \in E : d(f, g) = |f(0) - g(0)| + \int_0^1 |f(t) - g(t)| dt
$$

- 1. Show that d is a distance on E :
	- Positive : $d \geq 0$ (Obvious). Let $f, g \in E$. $d(f, g) = 0 \Leftrightarrow |f(0) - g(0)| = 0 \wedge$ \overline{r} 1 $\overline{0}$ $|f(t) - g(t)| dt = 0 \Leftrightarrow |f(t) - g(t)| = 0, \forall t \in [0, 1].$ \Leftrightarrow $f(t) = g(t), \forall t \in [0, 1].$ \Leftrightarrow $f \equiv g$
	- Symmetry : Obvious.
	- Triangle inequality : Let $f, g, h \in \mathbb{R}$. Then;

$$
d(f,h) = |f(0) - h(0)| + \int_0^1 |f(t) - h(t)| dt
$$

\n
$$
\leq |f(0) - g(0)| + \int_0^1 |f(t) - g(t)| dt + |g(0) - h(0)| + \int_0^1 |g(t) - h(t)| dt
$$

\n
$$
= d(f,g) + d(g,h)
$$

So, d is a distance on E .

2. Elements of the unit ball in $(E, d) : x, x^2$, $\sqrt{x}, x^{\alpha} (\alpha \in \mathbb{Q}^+).$

Exercice 08 :

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}, f : \overline{\mathbb{R}} \to [-1, 1]$ such that :

$$
f(x) = \begin{cases} \frac{-1}{x} & \text{: } x = -\infty \\ \frac{-1}{1+|x|} & \text{: } x \in \mathbb{R} \\ 1 & \text{: } x = +\infty \end{cases}
$$

^{*}) Let us show that $d(x, y) = |f(x) - f(y)|$ defines a distance on $\overline{\mathbb{R}}$: We must show that f is bijective.

- Positive :
$$
d \ge 0
$$
 (Obviously).
\nSoit $x, y \in \overline{\mathbb{R}}$.
\n $d(x, y) = 0 \Leftrightarrow |f(x) - f(y)| = 0$
\n $\Leftrightarrow f(x) = f(y)$
\n $\Leftrightarrow x = y$ (since f est bijective)

– Symmetry : Obvious.

– Triangle inequality : Obvious

) $B(0,1) = \{x \in \overline{\mathbb{R}} : d(0,x) < 1\} = \mathbb{R}.$ *) $\overline{B}(0,1) = \{x \in \overline{\mathbb{R}} : d(0,x) \leq 1\} = \overline{\mathbb{R}}.$

Exercice 09 :

 $-U = \{-x : x \in U\}$ $\lambda U = \{\lambda x : x \in U\}$ $(\lambda \in \mathbb{R}^*)$ $a + U = \{a + x : x \in U\}$ $(a \in \mathbb{R})$ Montrer que :

1. \Rightarrow Let $x \in -U$. Hence : $-x \in U$. Then, there exists $r > 0$ such that $B(-x, r) =$ $]-x-r,-x+r[\subset U.$ Thus; $|x - r, x + r \in U$, i.e. $-U$ is open. $\Leftarrow -U$ open $\Rightarrow U = -(-U)$ open.

2. \Rightarrow Assume that $\lambda > 0$ and let $x \in \lambda U$. Thus, $\frac{x}{\lambda}$ λ $\in U$. Then, there exists $r > 0$ such that $\left|\frac{x}{x}\right|$ λ $-r$, \overline{x} λ $+r\in U$. Hence; $]x - \hat{\lambda}r, x + \lambda r \in U$, ie. λU is open. For all $\lambda < 0$: U open $\Rightarrow -\lambda U$ open $\Rightarrow \lambda U$ open. $\Leftrightarrow \lambda U$ open $\Rightarrow U =$ 1 λ (λU) open. 3. \Rightarrow Let $x \in a+U$. Then, $x-a \in U$. Then, there exists $r > 0$ such that $]x-a-r, x-a+r[$ ⊂

 U . Hence, $|x - r, x + r$ [$\subset a + U$, ie. $a + U$ is open. $\Leftrightarrow a + U$ open $\Rightarrow U = -a + (a + U)$ open.

Exercice 10 : Let $x, y, z \in E$. We have

- 1. $d(x, y) = 0 \Longleftrightarrow \|x y\| = 0 \Longleftrightarrow x y = 0 \Longleftrightarrow x = y,$
- 2. $d(x, y) = ||x y|| = |-1| ||y x|| = d(y, x),$
- 3. $d(x, z) = ||x z|| = ||x y + y z|| \le ||x y|| + ||y z|| = d(x, y) + d(y, z),$

Hence, d is a distance on E .

"Homework N01 is evaluated out of 5 points, from a total of 20." Mathematics instructor : Abdelaziz Hellal