Exercice 01: Let $E=\{a, b, c, d\}$ be a set,

1. Determine which is topology in the following families: $\tau_{1}=\{\emptyset, E,\{a\},\{c, d\},\{a, c, d\}\}$, $\tau_{2}=\{\emptyset, E,\{a\},\{c, d\},\{b, c, d\}\}, \tau_{3}=\{\emptyset, E,\{a\},\{a, b\},\{a, b, c\}\}$.
2. In topology cases, find the closed sets?

Exercice 02: Let $\left.\alpha \in \mathbb{R}, I_{\alpha}=\right] \alpha ;+\infty\left[\right.$ and $\tau=\left\{\emptyset, \mathbb{R}, I_{\alpha},(\alpha \in \mathbb{R})\right\}$,

1. Prove that (\mathbb{R}, τ) is a topological space?
2. Compare between τ and the usual topology of \mathbb{R} ?

Exercice 03: Let $E=\{a, b, c, d\}$ be a set endowed with the topology $\tau=\{\emptyset, E,\{a\},\{b\},\{a, b\},\{a, c\}\}$.

1. Show that τ is a topology?
2. Are $\{a\},\{a, b\}$ closed sets?

Exercice 04 : Let \mathbb{R} be a real line endowed with the topology $\tau=\left\{\emptyset, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup\right.$ $\left.\mathbb{N}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z}, \mathbb{R}\right\}$, and assume that $D=\{3, \sqrt{3}\}$.

1. Find $\mathcal{V}(D), D^{\prime}, \mathcal{F} r(D), \mathcal{E} x t(D)$.
2. Prove that D is dense in \mathbb{R}. Conclude?
3. Compare between the induced topology $\tau_{\mathbb{Z}}$ and the trivial topology of \mathbb{Z} ?

Exercice 05 : Find the interiors and the closure of the following subsets :

$$
\begin{aligned}
& A=\left\{-1+\frac{1}{n}, n \in \mathbb{N}^{*}\right\} \\
& B=]-1,1[\cup\{2\} \cup[3,4[\\
& C=\left\{x \in \mathbb{R}: x^{2} \leq 4\right\} \cap[1,5[\\
& D=\mathbb{Q} \cap[-1,1]
\end{aligned}
$$

Exercice 06 : Let (E, τ) be a topological space. We equip E^{2} with the product topology.
Show that E is Hausdorff (separated) if and only if \triangle is closed in E^{2}. where $\triangle=\{(x ; x): x \in E\}$ (the diagonal of E^{2}).
Exercice 07 : Let $E=\mathcal{C}([0,1], \mathbb{R})$. We define the function $d: E \times E \longrightarrow \mathbb{R}$ as follows :

$$
\forall f, g \in E: d(f, g)=|f(0)-g(0)|+\int_{0}^{1}|f(t)-g(t)| d t
$$

1. Show that d is a distance on E ?
2. Find the open ball of (E, d) ?

Exercice 08: Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$, and let $f: \overline{\mathbb{R}} \rightarrow[-1,1]$ such that:

$$
f(x)=\left\{\begin{array}{cl}
\frac{-1}{x} & : x=-\infty \\
\frac{x}{1+|x|} & : x \in \mathbb{R} \\
1 & : x=+\infty
\end{array}\right.
$$

Show that $d(x, y)=|f(x)-f(y)|$ define a distance on $\overline{\mathbb{R}}$, and find $B(0,1), \bar{B}(0,1)$.

Exercice 09 : Let U be a subset nonempty of \mathbb{R}, endowed with the usual topology $(\mathbb{R},|\cdot|)$. We define :
$-U=\{-x: x \in U\}$
$\lambda U=\{\lambda x: x \in U\}\left(\lambda \in \mathbb{R}^{*}\right)$
$a+U=\{a+x: x \in U\}(a \in \mathbb{R})$
Prove that:

1. U open $\Leftrightarrow-U$ open.
2. U open $\Leftrightarrow \lambda U$ open.
3. U open $\Leftrightarrow a+U$ open.

Exercice 10 : Let E be a vector space on $\mathbb{K}=\mathbb{R}$ où \mathbb{C}. We say a norm on E a map

$$
\begin{gathered}
\|\cdot\|: E \longrightarrow \mathbb{R}^{+} \\
x \longmapsto\|x\|
\end{gathered}
$$

such that : $\left\{\begin{array}{l}\|x\|=0 \Longleftrightarrow x=0, \\ \forall \alpha \in \mathbb{K}, \forall x \in E:\|\alpha x\|=|\alpha|\|x\|, \quad \text { (Homogeneity), } \\ \forall x, y \in E:\|x+y\| \leq\|x+y\|, \quad \text { (Triangle inequality). }\end{array}\right.$
Let $d: E \times E \longrightarrow \mathbb{R}^{+}$, define by $d(x, y)=\|x-y\|, \forall x, y \in E$.
Show that d is a distance on E ?

