Mohamed Boudiaf-Msila University

Faculty of Mathematics and Computer Science Series 01: Topological Spaces

L2: Semestre 03

Department of Mathematics Year: 2022-2023

Module: Introduction to Topology

Exercice 01 : Let $E = \{a, b, c, d\}$ be a set,

- 1. Determine which is topology in the following families : $\tau_1 = \{\emptyset, E, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau_2 = \{\emptyset, E, \{a\}, \{c, d\}, \{b, c, d\}\}, \tau_3 = \{\emptyset, E, \{a\}, \{a, b\}, \{a, b, c\}\}.$
- 2. In topology cases, find the closed sets?

Exercice 02: Let $\alpha \in \mathbb{R}$, $I_{\alpha} =]\alpha; +\infty[$ and $\tau = \{\emptyset, \mathbb{R}, I_{\alpha}, (\alpha \in \mathbb{R})\},$

- 1. Prove that (\mathbb{R}, τ) is a topological space?
- 2. Compare between τ and the usual topology of \mathbb{R} ?

Exercice 03 : Let $E = \{a, b, c, d\}$ be a set endowed with the topology $\tau = \{\emptyset, E, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$.

- 1. Show that τ is a topology?
- 2. Are $\{a\}, \{a, b\}$ closed sets?

Exercice 04: Let \mathbb{R} be a real line endowed with the topology $\tau = \{\emptyset, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{N}, \mathcal{C}_{\mathbb{R}}^{\mathbb{Q}} \cup \mathbb{Z}, \mathbb{R}\}$, and assume that $D = \{3, \sqrt{3}\}$.

- 1. Find $\mathcal{V}(D), D', \mathcal{F}r(D), \mathcal{E}xt(D)$.
- 2. Prove that D is dense in \mathbb{R} . Conclude?
- 3. Compare between the induced topology $\tau_{\mathbb{Z}}$ and the trivial topology of \mathbb{Z} ?

Exercice 05: Find the interiors and the closure of the following subsets:

$$A = \{-1 + \frac{1}{n}, n \in \mathbb{N}^*\}$$

$$B =] -1, 1[\cup \{2\} \cup [3, 4[$$

$$C = \{x \in \mathbb{R} : x^2 \le 4\} \cap [1, 5[$$

$$D = \mathbb{Q} \cap [-1, 1]$$

Exercice 06 : Let (E, τ) be a topological space. We equip E^2 with the product topology. Show that E is Hausdorff (separated) if and only if Δ is closed in E^2 .

where $\triangle = \{(x; x) : x \in E\}$ (the diagonal of E^2).

Exercice 07: Let $E = \mathcal{C}([0,1],\mathbb{R})$. We define the function $d: E \times E \longrightarrow \mathbb{R}$ as follows:

$$\forall f, g \in E : d(f, g) = |f(0) - g(0)| + \int_0^1 |f(t) - g(t)| dt$$

- 1. Show that d is a distance on E?
- 2. Find the open ball of (E, d)?

Exercice 08 : Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, and let $f : \overline{\mathbb{R}} \to [-1, 1]$ such that :

$$f(x) = \begin{cases} -1 & : & x = -\infty \\ \frac{x}{1+|x|} & : & x \in \mathbb{R} \\ 1 & : & x = +\infty \end{cases}$$

Show that d(x,y) = |f(x) - f(y)| define a distance on $\overline{\mathbb{R}}$, and find $B(0,1), \overline{B}(0,1)$.

Exercice 09 : Let U be a subset nonempty of \mathbb{R} , endowed with the usual topology $(\mathbb{R}, |.|)$. We define :

$$-U = \{-x : x \in U\}$$

$$\lambda U = \{\lambda x : x \in U\} \ (\lambda \in \mathbb{R}^*)$$

$$a + U = \{a + x : x \in U\} \ (a \in \mathbb{R})$$
Prove that :

- 1. U open $\Leftrightarrow -U$ open.
- 2. U open $\Leftrightarrow \lambda U$ open.
- 3. U open $\Leftrightarrow a + U$ open.

Exercice 10 : Let E be a vector space on $\mathbb{K} = \mathbb{R}$ où \mathbb{C} . We say a norm on E a map

$$\|\cdot\|: E \longrightarrow \mathbb{R}^+$$
$$x \longmapsto \|x\|$$

$$\text{such that} : \left\{ \begin{array}{l} \|x\| = 0 \Longleftrightarrow x = 0, \\ \forall \alpha \in \mathbb{K}, \forall x \in E : \|\alpha x\| = |\alpha| \|x\|, & \text{(Homogeneity)}, \\ \forall x, y \in E : \|x + y\| \leq \|x + y\|, & \text{(Triangle inequality)}. \end{array} \right.$$

Let $d: E \times E \longrightarrow \mathbb{R}^+$, define by $d(x,y) = \|x-y\|, \forall x,y \in E$. Show that d is a distance on E?