Exercice 01 : Let $E = \{a, b, c, d\}$ be a set.

- 1. Determine the topology in the following families : $\tau_1 = \{\emptyset, E, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau_2 = \{\emptyset, E, \{a\}, \{c, d\}, \{b, c, d\}\}, \tau_3 = \{\emptyset, E, \{a\}, \{a, b\}, \{a, b, c\}\}.$
- 2. In topology cases, find the closed sets?

Exercice 02: Let $\alpha \in \mathbb{R}$, $I_{\alpha} =]\alpha; +\infty[$ and $\tau = \{\emptyset, \mathbb{R}, I_{\alpha}, (\alpha \in \mathbb{R})\}.$

- 1. Prove that (\mathbb{R}, τ) is a topological space?
- 2. Compare between τ and the Euclidean topology (standard) of \mathbb{R} ?

Exercice 03 : Let $E = \{a, b, c, d\}$ be a set endowed with the topology $\tau = \{\emptyset, E, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$.

- 1. Show that τ is a topology on E?
- 2. Are $\{a\}, \{a, b\}$ closed sets?

Exercice 04 : Let \mathbb{R} be a real line endowed with the topology $\tau = \{\emptyset, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathcal{C}^{\mathbb{Q}}_{\mathbb{R}}, \mathcal{C}^{\mathbb{Q}}_{\mathbb{R}} \cup \mathbb{N}, \mathcal{C}^{\mathbb{Q}}_{\mathbb{R}} \cup \mathbb{Z}, \mathbb{R}\}$ and assume that $D = \{3, \sqrt{3}\}.$

- 1. Find the family of neighbourhoods of D, $(\mathcal{V}(D))$, the accumulation point of D, (D'), the boundary of D, $(\mathcal{F}r(D))$, and the exterior of the set D, $(\mathcal{E}xt(D))$?
- 2. Prove that D is dense in \mathbb{R} . Conclude?
- 3. Compare between the induced topology $\tau_{\mathbb{Z}}$ and the trivial topology of \mathbb{Z} ?

Exercice 05: Let $(\mathbb{R}, |\cdot|)$ be a topological space. Find the interiors and the closure of the following subsets :

$$A = \{-1 + \frac{1}{n}, n \in \mathbb{N}^*\}$$

$$B =] -1, 1[\cup\{2\} \cup [3, 4[$$

$$C = \{x \in \mathbb{R} : x^2 \le 4\} \cap [1, 5]$$

$$D = \mathbb{Q} \cap [-1, 1]$$

Exercice 06: Let (E, τ) be a topological space. We equip E^2 with the product topology. Show that E is Hausdorff (separated) if and only if Δ is closed in E^2 . where

$$\triangle = \{(x; x) : x \in E\}$$

(the diagonal of E^2).

Exercice 07: Let $E = \mathcal{C}([0,1],\mathbb{R})$. We define the function $d: E \times E \longrightarrow \mathbb{R}$ as follows:

$$\forall f, g \in E : d(f,g) = |f(0) - g(0)| + \int_0^1 |f(t) - g(t)| dt$$

- 1. Show that d is a distance on E?
- 2. Find the open ball of (E, d)?

Exercice 08 : Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ and let $f : \overline{\mathbb{R}} \to [-1, 1]$ such that :

$$f(x) = \begin{cases} -1 & : \ x = -\infty \\ \frac{x}{1+|x|} & : \ x \in \mathbb{R} \\ 1 & : \ x = +\infty \end{cases}$$

Show that d(x, y) = |f(x) - f(y)| define a distance on $\overline{\mathbb{R}}$ and find $B(0, 1), \overline{B}(0, 1)$. **Exercice 09 :** Let U be a subset nonempty of \mathbb{R} endowed with the standard topology $(\mathbb{R}, |.|)$. We define :

 $\begin{aligned} -U &= \{-x : x \in U\} \\ \lambda U &= \{\lambda x : x \in U\} \ (\lambda \in \mathbb{R}^*) \\ a + U &= \{a + x : x \in U\} \ (a \in \mathbb{R}) \\ \text{Prove that} : \end{aligned}$

- 1. U open $\Leftrightarrow -U$ open.
- 2. U open $\Leftrightarrow \lambda U$ open.
- 3. U open $\Leftrightarrow a + U$ open.

Exercice 10 : Let *E* be a vector space on $\mathbb{K} = \mathbb{R}$ où \mathbb{C} . We say a norm on *E* a map

$$\| \cdot \| : E \longrightarrow \mathbb{R}^+$$
$$x \longmapsto \| x \|$$

such that : $\begin{cases} \|x\| = 0 \iff x = 0, \\ \forall \alpha \in \mathbb{K}, \forall x \in E : \|\alpha x\| = |\alpha| \|x\|, & (\text{Homogeneity}), \\ \forall x, y \in E : \|x + y\| \le \|x + y\|, & (\text{Triangle inequality}). \end{cases}$

Let $d: E \times E \longrightarrow \mathbb{R}^+$ define by $d(x, y) = ||x - y||, \forall x, y \in E$. Show that d is a distance on E?

Homework N01 :

1. Give an example of subsets. $A, B \subset \mathbb{R}$ such that

 $A \cap B = \emptyset, \quad \overline{A} \cap B \neq \emptyset, \quad A \cap \overline{B} \neq \emptyset.$

- 2. Let A, \overline{B} be subsets in a topological space. Prove $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. On the plane \mathbb{R}^2 consider the family τ consisting of the empty set, \mathbb{R}^2 and all open discs $\{x^2 + y^2 < r^2\}, \quad r > 0$. i.e.

$$\tau = \{ \emptyset, \mathbb{R}^2, \{ x^2 + y^2 < r^2 \}, \quad r > 0 \}$$

Prove that τ defines a topology and determine the closure of the hyperbola xy = 1.