L2 : Semester 03 S02 : Complete Spaces Year : 2024-2025

Exercice 01 :

Let $X = \{a, b, c, d\}$ be a set equipped with the topology $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}, Y = \{1, 2, 3, 4\}$ equipped with $\sigma = \{\emptyset, Y, \{1\}, \{1, 2\}, \{1, 2, 3\}\}$, and suppose that

$$f: (X,\tau) \to (Y,\sigma)$$

is a map defined by : f(a) = f(b) = 1, f(c) = 2, f(d) = 4.

- 1. Calculate $\mathcal{V}(a), \mathcal{V}(b), \mathcal{V}(c), \mathcal{V}(d)$?
- 2. Calculate $\mathcal{V}(1), \mathcal{V}(2), \mathcal{V}(3), \mathcal{V}(4)$?
- 3. Calculate $f^{-1}(\mathcal{V}(1)), f^{-1}(\mathcal{V}(2)), f^{-1}(\mathcal{V}(4))$?
- 4. Study the continuity of f at a, b, c, d?

Exercice 02:

Let (X, τ) be a topological space and $A \subset X$. We define the indicator map of A (noted χ_A) from (X, τ) to $(\mathbb{R}, |.|)$ by

$$\chi_A(x) = \begin{cases} 1, & if \quad x \in A \\ 0, & if \quad x \notin A \end{cases}$$

Give a necessary and sufficient condition for the indicator application χ_A to be continuous. Exercice 03 :

Let $E = C([0, 1]; \mathbb{R})$ is equipped with the following distances

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx \qquad d_\infty(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

and assume that the map H from E to $(\mathbb{R}, |.|)$ defined by $H(f) = \int_0^1 |f(x)| dx$.

- 1. Prove that H is Lipschitz function from (E, d_1) to $(\mathbb{R}, |.|)$?
- 2. Prove that H is Lipschitz function from (E, d_{∞}) to $(\mathbb{R}, |.|)$?
- 3. Is H a bijective map?

Exercice 04 :

Is the following sets closed in (\mathbb{R}^2, d_2) ?

1.
$$A = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$$

2. $B = \{(x, y) \in \mathbb{R}^2 : y \le x^2\}$
3. $C = \{(x, y, z) \in \mathbb{R}^3 : z \le x^2 - y^2 + 5\}$

Exercice 05 :

Build homeomorphisms between :

1. Two intervals of the form [a; b] and [c; d] with a < b and c < d.

- 2. The interval]-1;1[and \mathbb{R} .
- 3. The circle C(0,1) and \mathbb{R} .
- 4. The sphere S(0,1) and \mathbb{R}^2 .

Exercice 06 :

Let $d: \mathbb{Q}^* \times \mathbb{Q}^* \longrightarrow \mathbb{R}^+$ be a map such that $d(p,q) = \begin{cases} 0 & : p = q \\ \frac{1}{|p|} + \frac{1}{|q|} & : p \neq q \end{cases}$

- 1. Show that d is a distance on \mathbb{Q}^* ?
- 2. Are the two sequences $u_n = \frac{1}{n}$, $u_n = n$ Cauchy sequences ?
- 3. Show that (\mathbb{Q}^*, d) is not complete?

Exercice 07:

Let $E=\mathbb{N}^*$ be a set. We put for all $n,m\in E$:

$$d(m,n) = \begin{cases} 0 & : m = n \\ 10 + \frac{1}{m} + \frac{1}{n} & : m \neq n \end{cases}$$

- 1. Prove that d is a distance on E?
- 2. Show that (E, d) is not complete?
- 3. Let $f: E \to E$ be a map with f(n) = n + 1. Prove that for all $n, m \in E(n \neq m)$ we have d(f(n), f(m)) < d(n, m), but f is not contraction.

Homework N02 :

Part 01 : (<u>Contraction Theorem</u>) Let (X, d) be a metric space. A function $f : X \longrightarrow X$ is called a contraction (mapping) if there exists a real number $\alpha < 1$ such that

$$d(f(x), f(y)) \le \alpha \ d(x, y)$$
 for every $x, y \in X$.

- 1. Prove that if (X, d) is complete, non-empty, and $f : X \longrightarrow X$ a contraction, there exists a unique point $c \in X$ such that f(c) = c.
- 2. Show that for every $x \in X$ the sequence $(f_n(x))$ converges to c?

Part 02 : 1. Find a map $f : \mathbb{R} \longrightarrow \mathbb{R}$ without fixed points and such that

$$|f(x) - f(y)| < |x - y|$$
 for every $x, y \in \mathbb{R}$.

2. Let (X, d) be complete and $U \subset X$ closed. Every Cauchy sequence in U is Cauchy in X, so it converges to a limit $x \in \overline{U}$; therefore, (A, d) is complete provided U is closed.