Université Mohamed Boudiaf-M'sila Département des Mathématiques-MI Module: Introduction à la Topologie

2 éme Année Licence Maths

Semestre: 1

Année: 2022-2023

Corrigé de l'examen final

Solution d'exercice 01 :(05 pts) $E = \{a, b, c\}, \tau = \{\emptyset, E, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}\}$

- 1. Montrons que (E, τ) est un espace topologique.....(01 pts)
 - *) \emptyset , $E \in \tau$,

$$**) \forall \mathcal{O} \in \tau : \emptyset \cap \mathcal{O} = \emptyset \in \tau, E \cap \mathcal{O} = \mathcal{O} \in \tau, \{a\} \cap \{c\} = \emptyset \in \tau, \{a\} \cap \{a,b\} = \{a\} \in \tau, \{a\} \cap \{a$$

$$\{a\} \cap \{a,c\} = \{a\} \in \tau, \{c\} \cap \{a,b\} = \emptyset \in \tau, \{c\} \cap \{a,c\} = \{c\} \in \tau, \{a,b\} \cap \{a,c\} = \{a\} \in \tau$$

***)
$$\forall \mathcal{O} \in \tau : \emptyset \cup \mathcal{O} = \mathcal{O} \in \tau, E \cup \mathcal{O} = E \in \tau, \{a\} \cup \{c\} = \{a, c\} \in \tau, \{a\} \cup \{a, b\} = \{a, b\} \in \tau,$$

$$\{a\} \cup \{a,c\} = \{a,c\} \in \tau, \{c\} \cup \{a,b\} = E \in \tau, \{c\} \cup \{a,c\} = \{a,c\} \in \tau, \{a,b\} \cup \{a,c\} = E \in \tau$$

Donc τ est une topologie.

- 2. L'ensemble F de tous fermés de l'espace (E, τ) est $\{\emptyset, E, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$(01 pts)
- 3. Comme $D = \{b, c\},\$

L'intérieur de D est $D = \{c\}$ (0, 5 pts)

L'adhérence de D est $\overline{D} = D$ car D est fermé(0, 5 pts)

La trace de la topologie (E, τ) sur D est $\tau_D = \{\emptyset, D, \{b\}, \{c\}\}....(0, 5 pts)$

4. $\sigma = \{\emptyset, E, \{a\}, \{b, c\}\},\$

Montrons que l'espace topologique (E, σ) n'est pas connexe

On a $\{a\}$ est un ouvert et fermé dans (E, σ) , mais $\{a\} \neq \emptyset$, $\{a\} \neq E$.

Donc (E, σ) n'est pas connexe....(0, 5 pts)

5. $\{b,c\} \in \mathbf{V}_{\sigma}(b)$, alors que $\{b,c\} \notin \mathbf{V}_{\tau}(b)$. Donc f n'est pas continue au point b.....(01 pts)

Solution d'exercice 02 : (05 pts)

$$d: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{R}^+, d(n,m) = \begin{cases} 0 & si \quad n = m \\ 1 + \frac{1}{n+m} & si \quad n \neq m \end{cases}$$

- 1. Vérifions que d est une distance sur \mathbb{N} (01 pts)
 - i) Positive: $\forall n, m \in E$; $d(n, m) \ge 0$, $d(n, m) = 0 \Leftrightarrow n = m$.
 - ii) Symétrie : $\forall n, m \in E; \ d(n, m) = d(m, n).$

iii) Soient
$$n, m, p \in E$$
. On a : $d(n, p) = 1 + \frac{1}{n+p} \le 1 + \frac{1}{n+m} + 1 + \frac{1}{m+p} = d(n, m) + d(m, p)$.

2. La boule ouverte. On a $B(0,r) = \{0\} \cup G$, avec $G = \{n \in \mathbb{N}^* : d(0,n) < 1\}$(0,5 pts)

On a $d(0,n) < r \iff 1 + \frac{1}{n} < r \iff \frac{1}{n} < r - 1 \dots (0,5 \text{ pts})$

Si $r \le 1$ alors $G = \emptyset$. Donc $B(0, r) = \{0\}$(0, 5 pts).

Si r > 1 alors $G = \{n_0 + 1, n_0 + 2,\}$, avec $n_0 = \left[\frac{1}{r-1}\right]$.

Donc $B(0,r) = \{0, n_0 + 1, n_0 + 2, \dots\}$(0, 5 pts).

- 3. Soit (u_n) une suite de Cauchy n'est pas stationnaire, et soit $\varepsilon > 0$, pour un sertain rang $n_0 \in \mathbb{N}$, et pour $n, m > n_0$ on a $d(u_n, u_m) < \varepsilon$. Ce qui donne $1 + \frac{1}{u_n + u_m} < \varepsilon$. Si on prend $\varepsilon < 1$ on trouve $1 + \frac{1}{u_n + u_m} < 0$, contradiction.(0, 5 pts) Donc (u_n) est stationnaire......(0, 5 pts)
- 4. Toute suite de Cauchy est stationnaire, alors convergente......(0, 5 pts) Donc (\mathbb{N}, d) est complet.....(0, 5 pts)

Solution d'exercice 03 : (05 pts)

Dans (\mathbb{R}^2, d_2) , considérons les ensembles suivants :

$$A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2\}, \ B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\},$$
$$C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, \ D = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2\}$$

- 1. Reprisentation graphique des A, B, C, et D.....(01 pts)
- 3. Etudions la connexité de CSoit la fonction $f:]-\pi, +\pi] \longrightarrow \mathbb{R}^2$, définie par $\forall t \in]-\pi, +\pi]: f(t) = (\cos t, \sin t)$, on a $f(]-\pi, +\pi]) = C$. Comme f est continue sur $]-\pi, +\pi]$, et $]-\pi, \pi]$ est connexe. Donc C est connexe.......(01 pts)

Exercice 04:(05 pts)

Soit $E = C^1([0,1], \mathbb{R})$, muni de la norme $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

1. (E, ||.||) est un espace de Banach.(0, 5 pts) Justification :

On dit qu'un e.v.n $(E, \|.\|)$ est un espace de Banach si l'espace métrique associé à la norme $\|.\|$ est un espace métrique complet.(0, 5 pts) On a $\|\cdot\|_{\infty}$ est une norme sur E car

$$\|\cdot\|_{\infty}: E \longrightarrow \mathbb{R}^+$$

$$f \longmapsto \|f\|_{\infty}$$

$$\begin{cases} \|f\|_{\infty} = 0 \Longleftrightarrow f = 0, \dots (0.5 \text{ pts}) \\ \forall \alpha \in \mathbb{R}, \forall f \in E : \|\alpha f\|_{\infty} = |\alpha| \|f\|_{\infty}, & \text{(Homogénéité)}, \dots (0.5 \text{ pts}) \\ \forall f, g \in E : \|f + g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}, & \text{(Inégalité triangulaire)}, \dots (0.5 \text{ pts}) \end{cases}$$

Soit (f_n) une suite de Cauchy dans E. i.e. $\lim_{n,m\to+\infty} ||f_n-f_m||_{\infty} = 0$. Ce qui donne $(f_n(x))$ est de Cauchy dans \mathbb{R} (Banach), elle converge vers (f(x)). Donc (f_n) converge vers $f \in E$(01 pts).

2. $T: E \to E, \forall f \in E: T_f(x) = T(f)(x) = f'(x), \forall x \in [0, 1].$

T n'est pas continue.(0, 5 pts)

Justification : Grace au théorème ci-dessous, on peut prend une suite $f_n(x) = \frac{\sin(nx)}{n}$; $n \in \mathbb{N}^*$, qui converge vers 0.

Mais $T(f_n)(x) = f'_n(x) = \cos(nx)$ n'est pas converge vers T(0)(x) = 0.....(01 pts)

Théorème: Soient $(E,d), (F,\delta)$ deux espaces métrique, l'application $T:(E,d) \to (F,\delta)$ est continue au point θ si et seulement si, pour toute suite $(u_n)_{n\in\mathbb{N}}$ de E converge vers θ , la suite image $T((u_n))_{n\in\mathbb{N}}$ converge vers $T(\theta)$.

Notre espoir est d'avoir réussi! Votre enseignant Mr. H. Abdelaziz