2 éme Année Licence Maths

Date: ..-..-2023. **Durée:** 01h30

Examen de rattrapage

Exercice 01:(06 pts) Soient $E = \{1, 2, 3\}$, et la famille $\tau = \{\emptyset, E, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}\}$

- 1. Montrer que (E, τ) est un espace topologique?
- 2. Donner l'ensemble F de tous fermés de l'espace (E, τ) ?
- 3. On pose $D=\{1,3\}$ Déterminer l'intérieur de D, l'adhérence de D et τ_D la trace de la topologie (E,τ) sur D?
- 4. Soit la famille $\sigma = \{\emptyset, E, \{1\}, \{2,3\}\},$ Montrer que l'espace topologique (E, σ) n'est pas connexe?
- 5. Soit l'application $f:(E,\tau)\to (E,\sigma)$ définie par : $\forall x\in E: f(x)=x$, Etudier la continuité de l'application f au point $\alpha=2$?

Exercice 02:(04 pts)

Soit l'application $d: \mathbb{R}^+_{\star} \times \mathbb{R}^+_{\star} \longrightarrow \mathbb{R}^+$, définie par $d(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right|$

- 1. Vérifier que d est une distance sur \mathbb{R}^+_{\star} ?
- 2. Définir une boule de centre 1 et de rayon r?
- 3. On pose $x_n = \sqrt{n}, n \in \mathbb{N}^*$. La suite (x_n) est-elle de Cauchy pour cette distance?

Exercice 03:(06 pts)

Considérons l'espace métrique (\mathbb{R}^2, d_2) , et soit les quatre ensembles suivants :

$$A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2\}, \ B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\},$$
$$C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, \ D = \{(x,y) \in \mathbb{R}^2 : x \cdot y > 1\}$$

- 1. Tracer dans un repère orthonormé A, B, C, et D?
- 2. Etudier la compacité de A et B?
- 3. Montrer que C est une partie connexe de \mathbb{R}^2 ?
- 4. Etudier la connexité de l'ensemble D?

Exercice 04:(04 pts)

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. Pour tout $f \in E$, l'application

$$N(f) = |f(0)| + \int_0^1 |f'(x)| \, dx,$$

Est ce que (E, N) est un espace vectoriel normé? Justifier votre réponse?

Remarque : f' la dérivée de f.