University of M'sila Department of Computer Science

Machine Learning Models

Chapter 4 : kNN

Lab #3 : kNN

<u>*Objectives*</u> : learn how to build and train a machine learning classifier in python using a k nearest neighbors (kNN) algorithm

Exercise #1

Train a kNN model that can predict the class for the dataset "data.csv". Follow these steps:

1) Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn import svm
```

2) Load data:

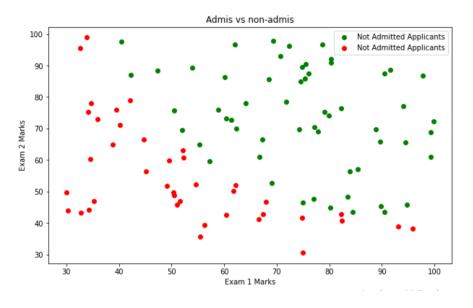
Load the csv file "data.csv".

Store the result into a variable called data.

3) Clean the dataset

Print the size of the dataset

Drop raws containing NULL values. You can use the dropna function.


Print the size of the dataset

4) Data visualization :

Visualize the data using scatter plot (represent in red when data['Admission status'] == 1 and in blue otherwise).

```
data_admitted = data[data['Admission status'] == 1]
plt.figure(figsize=(10,6))
#TODO: ajouter les élevès admis
plt.scatter(df_notadmitted['Exam 1 marks'], df_notadmitted['Exam 2 marks'],
color= 'red', label= 'Not Admitted Applicants')
#TODO ajouter un label pour les élèves admis
plt.ylabel('Exam 2 Marks')
#TODO ajouter un titre à la figure
plt.title("Admis vs non-admis")
plt.legend()
#TODO afficher la figure
```

This is what you should get

5) Data separation and data split:

Separate features from target

Split training set from test set (20% for test)

6) Create and train kNN models

Create three kNN models (k=1, k=5, k=9)

train the three models

7) Which model is better?

Exercise #2

Consider the Iris dataset. Given an observation of unknown class, you need to predict its class based on the class of its neighbors. Write a python program that predicts the class of the following observations : [0.75, 0.75, 0.75, 0.75] [1, 1, 1, 1]