

Determine f⁻¹ ({2;6}); f⁻¹ (]2;6]), f⁻¹ (]5;7]),and then deduce f⁻¹ (]2;6] ∪]5;7]) and f⁻¹ (]2;6] ∩]5;7]).
 Calculate f(-2) and f(2). Is f injective?
 Determine f(ℝ). Is f surjective?
 Determine a domain set I and a codomain set J for f to be bijective. **Remark**(1) f (A₁ ∪ A₂) = f (A₁) ∪ f (A₁).
(2) f (A₁ ∩ A₂) ⊂ f (A₁) ∩ f (A₁) and f (A₁ ∩ A₂) = f (A₁) ∩ f (A₁), if f is injective.
(3) f⁻¹ (B₁ ∩ B₂) = f⁻¹ (B₁) ∩ f⁻¹ (B₁).
(4) f⁻¹ (B₁ ∪ B₂) = f⁻¹ (B₁) ∪ f⁻¹ (B₁).

Exercise 07 * * * (Exam 2019-2020 (Univ-M'sila)) Let U be the function from \mathbb{R} to $] - 2, +\infty[$ defined by:

$$U(x) = e^x - 2$$

1. Determine $U^{-1}(0)$ and $U((0, \ln(2)))$.

2. Show that U is bijective and determine U^{-1} .

Exercise 08 ****** (Exam 2021-2022 (Univ-M'sila)) Let U be the function from \mathbb{R} to the interval $]-1;+\infty[$ defined by

 $U(x) = e^{-2x+2} - 1$

1. Determine U([-1;1]) and $U^{-1}(0)$ (2 points).

2. Show that U is bijective and determine U^{-1} (3 points).

Exercise 09 * * * (Exam 2019-2020 (Univ-U.S.T.H.B)) Consider the function f defined from \mathbb{R} to \mathbb{R} by: $f(x) = e^{\cos(x)}$ 1. Determine $f\left(\left[0;\frac{\pi}{2}\right]\right), f\left(\left[-\frac{\pi}{2};0\right]\right)$, and $f^{-1}(\{3\})$. 2. Is f injective, surjective? Exercise 10 *: (Resit exam 2021 (Univ-M'sila)) Let E = [1, 2] and F = [1, 3], two intervals in \mathbb{R} . Consider the function $U : E \to F$, defined by $U(x) = \frac{x+2}{-r+4}$ 1. Show that U is increasing. 2. Determine U([1; 1.5]). 3. Show that for all $x \in [1,2]$, $U(x) = -1 + \frac{6}{-x+4}$, then determine $U^{-1}\left(\left| 1; \frac{5}{4} \right| \right)$. 4. Show that U is injective. 5. Show that if $x \in [1; 2]$, then $U(x) \in [1; 2]$. 6. Is U surjective? Exercise 12 * (Exam 2018-2019 (Univ-U.S.T.H.B)) Consider the function f defined from \mathbb{R} to \mathbb{R} by: $f(x) = \frac{1}{1 + \ln(e + x^2)}$ 1. Calculate the derivative of f and create its table of variations. 2. Determine the direct image f(-1,1) and the inverse image $f^{-1}(0)$.

- 3. Conclude that f is neither injective nor surjective.
- 4. Determine a domain set and a codomain set such that f is bijective. Find the expression for f^{-1} in this case.

Exercise 13

Check the injectivity and surjectivity of the following functions:

- (1) $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^2$
- (2) $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$
- (3) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$
- (4) $f : \mathbb{R} \to \mathbb{R}_+$ given by $f(x) = x^2$
- (5) $f: \mathbb{R}_+ \to \mathbb{R}$ given by $f(x) = x^2$
- (6) $f: \mathbb{R}_+ \to \mathbb{R}_+$ given by $f(x) = x^2$

Exercise 14

Let \mathbb{N} be the set of natural numbers, and the function $f : \mathbb{N} \to \mathbb{N}$ be defined by f(n) = 2n + 3 for all $n \in \mathbb{N}$. Then f is

- (A) surjective
- (B) injective
- (C) bijective
- (D) none of these

Exercise 15

Let \mathbb{Q} be the set of ratinal numbers, and the function $f: \mathbb{Q} \to \mathbb{Q}$ be defined by f(n) = 2n + 3 for all

- $n \in \mathbb{Q}$. Then f is
 - (A) surjective
 - (B) injective
 - (C) bijective

(D) none of these

Exercise 16

Which of the following functions are one-to-one, onto, or bijective? Justify your answer.

1. $f : \mathbb{R} \to \mathbb{R}, f(x) = \sin x.$

2. $g: \mathbb{N} \to \mathbb{N}, g(n) = n+1.$

3.
$$h: \mathbb{N} \to \mathbb{N}^*, h(n) = n+1.$$

4. $r : \mathbb{R} \to \{0\}, r(x) = 0.$

Exercise 17

Consider two functions $f: \left[0; \frac{\pi}{2}\right] \to \mathbb{R}$ given by $f(x) = \sin x$ and $g: \left[0; \frac{\pi}{2}\right] \to \mathbb{R}$ given by $g(x) = \cos x$.

- 1) Show that f and g are one-to-one (injective)
- 2) Is h = f + g one-to-one?

Exercise 18

"Let f be the function defined from \mathbb{R} to \mathbb{R} by: $f(x) = \frac{1-x^2}{x^2+1}$.

1. Solve $f(x) = \frac{1}{4}$. What can be inferred from this?

2. Solve f(x) = 2. What can be inferred from this?

3. Determine a condition on the real number *a* for the equation f(x) = a to have solutions in \mathbb{R} .

- 4. Deduce an interval J in \mathbb{R} such that $g : \mathbb{R} \to J, x \mapsto f(x)$, is surjective.
- 5. Find an interval I in \mathbbm{R} such that $h:I\to J,\,x\mapsto f(x),$ is bijective."

Exercise 19

Show that the function $f: \mathbb{R} \to]-1, 1[$ defined by

$$f(x) = \frac{x}{|x|+1},$$

is one-to-one and onto function.

Exercise 20 * * *

Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by: $f(x) = \frac{1}{1+x^2}, \quad \forall x \in \mathbb{R}$. And Let $A = \{-1, 1\};$ B = [0, 1[; and C = [-1, 0].

- 1. Determine $f(A); f^{-1}(A); f(B); f^{-1}(B); f^{-1}(C)$.
- 2. Show that f is neither injective nor surjective.
- 3. Provide a domain set for f to be injective and a codomain set for f to be surjective.
- 4. Provide the expression for f^{-1} .

Exercise 21 $\star \star \star$

Let f and g be defined as follows: $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that f(x) = 2x and $g: \mathbb{N} \longrightarrow \mathbb{N}$ such that

$$g(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{x-1}{2} & \text{if } x \text{ is odd} \end{cases}$$

• Examine injectivity and surjectivity, then bijectivity of f and g. Determine $f \circ g$ and $g \circ f$.

Exercise 22 $\star \star \star$

Let E, F, and G be three sets, and let $f : E \longrightarrow F$ and $g : F \longrightarrow G$ be two functions.

- 1. Show that if $g \circ f$ is injective, then f is injective.
- 2. Show that if both f and g are injective, then $g \circ f$ is injective.
- 3. Show that if both f and g are surjective, then $g \circ f$ is surjective.
- 4. Deduce that if both f and g are bijective, then $g \circ f$ is bijective.

Exercise 23 * * *

Consider the function f from \mathbb{R} - to \mathbb{R} + defined by: $f(x) = |x|^2$.

Is the function f bijective? If yes, find the function f^{-1} .

Exercise 24 ******

Consider the function h from $\mathbb{R} - \{-1, +1\}$ to $\mathbb{R} - \{1\}$ defined by: $h(x) = \frac{2 + |x|}{|x| - 1}$.

- 1– For $a \in \mathbb{R} \{-1, +1\}$, calculate h(a) and h(-a).
- **2** Is the function h injective?

Exercise $25 \star \star \star$

Consider the function g from $\mathbb{R}/2$ to $\mathbb{R}/2$ defined by:

$$g(x) = \frac{1+2x}{x-2}.$$

1– Is the function g bijective? If yes, find the function g^{-1} .

2– Determine the function $g \circ g$.

Exercise 26 *: (Exam SM 2018-2019 (Univ-M'sila))

Consider the function f from $\mathbb{R}/-1,+1$ to $\mathbb{R}/1$ defined by:

$$f(x) = \frac{3+x^2}{x^2 - 1}.$$

1– Is the function f surjective?

2– Is the function f injective?

3– Is the function f bijective?

Exercise 27

Let T a binary relation on \mathbb{R}^{\star} defined as: $xTy\iff x\times y>0.$

1. Show that T is an equivalence relation.

2. Find the equivalence classes of 2.

Exercise 28

"Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 - 3x + 2$, and let S be a relation in \mathbb{R} defined by

- $xSy \iff f(x) = f(y)$ 1. Show that S is an equivalence relation.
- 2. Give the equivalence class of **2**.

Exercise 29 * (Exam 2022 (Univ-A.M.BEDJAIA)) "Let \mathcal{R} be the relation defined on \mathbb{Z} as follows:

$$\forall x, y \in \mathbb{Z}, x \mathcal{R} y \iff \exists k \in \mathbb{Z}, x + y = 2k$$

(a) Show that \mathcal{R} is an equivalence relation on \mathbb{Z} .

(b) Determine the equivalence class of 0."

Exercise 30

Let $(L_i)_i$ be the set of all lines in a plane, and let \mathcal{R} be the relation in $(L_i)_i$ defined as

 $L_i \mathcal{R} L_i \iff L_i$ is perpendicular to L_i .

Show that \mathcal{R} is symmetric but neither reflexive nor transitive.

Exercise 31

Let us define a relation on $\mathbb N$ by

 $a\mathcal{R}b \iff a \text{ divides } b.$

show that ${\mathcal R}$ is a partial order .

Exercise 32

if the following relations are reflexive, symmetric, antisymmetric, and transitive:

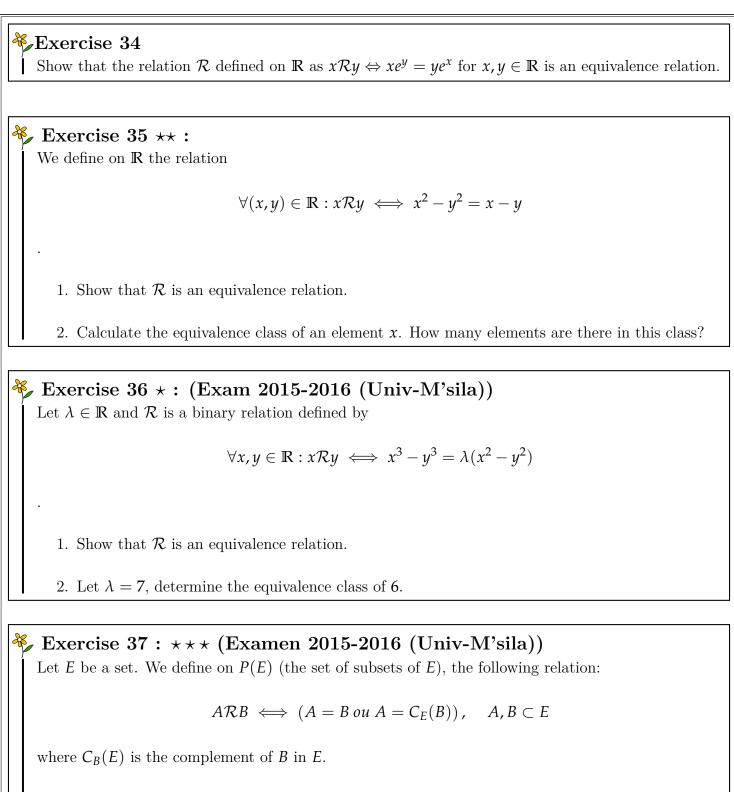
1. $x, y \in \mathbb{Z}$ $x \mathcal{R} y \Leftrightarrow x = -y$.

2. $x, y \in \mathbb{R}$ $x \mathcal{R} y \Leftrightarrow \cos(x)^2 + \sin(y)^2 = 1.$

Deduce, among the mentioned relations, which one is an equivalence relation.

Exercise 33

Show that the relation \mathcal{R} defined on \mathbb{R} as $x\mathcal{R}y \Leftrightarrow |x| = |y|$ for $x, y \in \mathbb{R}$ is an equivalence relation. Then, for x in \mathbb{R} , find the equivalence class of x.



1. Prove that \mathcal{R} is an equivalence relation.

2. For $E = \mathbb{R}$, determine the equivalence class of A = [0; 1], what do you notice?

🎸 Exercise 38 *

Let \prec be a binary relation on \mathbb{R}^2 defined as $(x, y) \prec (x_0, y_0) \Leftrightarrow x \leq x_0$ and $y \leq y_0$.

1. Demonstrate that \prec is a partial order relation. (Is it a total order?)

- 2. Determine $\sup A$, $\inf A$, $\max A$, and $\min A$ for $A = \{(1,2), (3,1)\}$.
- 3. Is the set A linearly ordered?

Exercise 39 *

Determine whether they exist: $\sup(A)$, $\max(A)$, $\min(A)$, and $\inf(A)$ in the following cases:

1. $A = \{-3; 5\}.$	6. $A = \left\{ -1 + \frac{1}{2n+1}, n \in \mathbb{N} \right\}.$
2. $A = [-1, 1[.$	7. $A = \left\{1 + \frac{1}{2n}, n \in \mathbb{N}^*\right\}.$
3. $A = \left\{ \cos\left(\frac{2n\pi}{5}\right), n \in \mathbb{Z} \right\}.$	$\left(\begin{array}{c} 1 \\ 2n \end{array} \right) = \left(\begin{array}{c} 1 \\ 2n \end{array} \right)$
4. $A = \{2^n, n \in \mathbb{N}\}.$	8. $A = \left\{ (-1)^n + \frac{1}{n}, n \in \mathbb{N}^* \right\}.$
5. $A = [-3; 4] \cup [7; 10].$	9. $A = \{n^2 - 4n + 3, n \in \mathbb{N}\}.$

Exercise 40 ****** (Exam 2018-2019 (Univ-U.S.T.H.B)) Let $A = \left\{3 - \frac{1}{2n+1}, n \in \mathbb{N}\right\}$. Determine whether they exist: $\sup(A)$, $\max(A)$, $\min(A)$, and $\inf(A)$.