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Introduction 

   Digital machines consist of a set of electronic circuits. Each circuit provides a well -determined 

logical function (addition, comparison…). 

                                     
 

The function F (A, B) may be: the sum of A and B, or the result of the comparison of A and B or 

another function. 

    To design and make this circuit we must have a mathematical model of the function carried out by 

this circuit. The mathematical model used is Boolean Algebra. 

      Boolean algebra, or Boolean calculus, is the part of mathematics, logic, and electronics that deals 

with operations and functions on logical variables. It was invented in 1854 by the British 

mathematician George Boole. Today, Boolean algebra finds many applications in computer science 

and in the design of electronic circuits. 

 
 Boolean algebra is used to study systems that have two states are excluded each other:  

- The system can only be in two states E1 and E2 such as E1 is the opposite of E2.  

- The system cannot be in the state E1 and E2 at the same time.  

 This is well suited to the binary system (0 and 1). 

Example of two states systems 

 A switch is open or not open (closed)  

 A lamp is lit or not on (extinct)  

 A door is open or not open (closed)  
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Note:  

You can use the following conventions:  

Yes  True  

No  false  

Yes  1 (high level)  

No  0 (low level) 

Logical level: when you study a logical system it is necessary to specify the level of work. 
 

 

 

 

 
Example:  

Positive Logic: Light lamp: 1 Extinct lamp: 0  

Negative Logic: Light lamp: 0 Extinct lamp: 1 

 
 

                              2.2 Boolean Variable (Logical Variable) 

   A Boolean variable has two values, either 0 or 1. A logical variable (Boolean) is a variable that can 

take either 0 or 1 value. Generally it is expressed by a single alphabetical character. 

Example:  

A Lamp: lit L = 1 extinct L = 0  

Switch: Open: S = 1 Closed: S = 0 
 

                 2.3 Boolean Function (Logical Function) 
 

 
 

 

Level Positive Logic Negative Logic 

H (Hight)             1               0 

L (Low)             0               1 
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 In Boolean algebra there are three basic operators: NOT, AND, OR.  

 The value of a logical function is equal to 1 or 0 depending on the values of the logical 

variables. If a logical function has N logical variables  2
n
 combinations  the function has 

2
n
 values.  

 The 2
n
 combinations are represented in a table called truth table. 

 

                            2.4 Boolean (Logical) operators 

    There are three basic operators AND, OR, NOT and other derived operators that are 

combinations of the basic operations. For each operator we will present the truth table 

and the corresponding logic gate.           

2.4.1 Basic Boolean (Logical) operators                    

 NOT (inverter) "    ̅ " : (negation or complement) 

The output is the opposite of the input. 

 
 

 

 

 OR (Disjunction) "+": (logical sum) 

 When one or more of the inputs is true (1) the output will be true (1). 
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 AND (Conjunction) ".": (logical product) 

When at all inputs are true (1) the output will be true (1). 

 

  
 

Remarks 

 In the definition of operators and, or, we just gave the basic definition with two logical 

variables.  

 The operator and can make the product of several logical variables (eg: A. B. C. D).  

 The operator or can also achieve the logical sum of several logical variables  

   (eg: A + B + C + D).  

 In an expression you can also use parentheses. 

2.4.2 Precedence of operators (Priority of operators): 

  Operators precedence from highest to lowest precedence: NOT AND OR. If there are several 

logical operators of the same precedence, they will be examined left to right. Note that we must 

evaluate bracketed expressions first, if they exist. 

• To evaluate a logical expression (logical (boolean) function): 

– We start by evaluating the sub-expressions between parentheses (...). 

– then the complement (NOT) 

– Following the logical product (AND) 

– Finally the logical sum (OR) 

2.4.3. Other logical operators  

 NAND (Not AND): 

 

 

 

F(A,B) A . B

( , )F A B A B



 
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 NOR (Not OR): 

 

 

 

       
                 2.5 Logic gates 

   Logic gates are basic building blocks of the electronic circuits that have one (or more) input and 

only one output. The graphic symbol for every logical gate below.  

 

 
 

F(A,B)    A B

( , )F A B A B

 

 
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   2.6 Truth Table (of Boolean Function (Logical Function)) 

 

 
 

  2.7 Principle of Duality 
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      2.8 Postulates 

      

       

 

2.9 Properties of Boolean Algebra "Algebraic properties" (Boolean Laws and Theorems) 

 

Associative law (A+B)+C= A+(B+C)=A+B+C (A.B).C=A.(B.C)=A.B.C 

Commutative law A+B=B+A A.B=B.A 

Distributive law A.(B+C)= A.B + A.C       A+(B.C)=(A+B).(A+C) 

Identity (Neutral) element  A+0=A       A.1=A 

Absorbent element  A+1=1       A.0=0 

 
 

 

 

 

  
 

 
 

 Complement Boolean (Logical) Function :  

 

A. ( A  B)  A

(A  B) . (A  B) A

A  A . B  A  B

 

  

  
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NAND and NOR are universal operators 

 

 Using the NAND and the NOR you can express any logical expression (function).  

 To do this, simply express the basic operators (NO, AND, OR) with NAND and NOR. 

 

 Creation of basic operators with NOR 

 

 
 

 

 

Exercise: 

   Express the NOT, AND, OR by using NAND ? 

2.10 Logic gates diagram (diagram of logic gates) "Logic Diagram" or "Logigram"  

   It is the translation of the logical function into an electronic diagram. The principle consists in 

replacing each logical operator by the gate logic that suits him. 

Example1: 

  

 

 

 

 

 

Example2: 

  

 

 

 

 

 

A A A A A

A B A B A B (A B) (A B)

A.B A.B A B A B (A A) (B B)

   

        

        

( , , ) . .F A B C A B B C  A

B

C

F

F(A,B,C,D)  (A  B ) . ( B C  D ) .A   
A

B

C

D

F
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Exercise 1:  

Draw the logigram (diagram of logic gates) of the following functions: 

 

 

 

Exercise 2:  

Give the equation of F? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Representation of Boolean Function 

 There are many equivalent representations of a Boolean function like: truth table, algebraic form 

(canonical form), numerical form, logic diagram, Karnaugh map. 

3.1 Truth table 

  See the section 2.6 

3.2 Algebraic form 

  The Boolean function is expressed in terms from complemented or uncomplemented variables 

connected with basic Boolean operators (+ or . and not ¯¯ ). 

Example: 

  (   )    ̅      ̅  

 (     )  ( ̅   ̅   ̅)( ̅     )(     ) 

…. 

 

F(A,B) A.B A.B

F(A,B,C) (A B).(A C).(B C)

F(A,B,C)  (A . B) . ( C B)  A.B.C

 

   

  

A

B

C

D

F
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     For the extraction of the algebric form (algebric expression) of a logical function from the Truth 

Table there are two canonical forms: First canonical form (DCF) and second canonical form (CCF). 

 

 



Chapter 3: Boolean Algebra  

 

 

11 
 

 

 

 

 

 

 



Chapter 3: Boolean Algebra  

 

 

12 
 

 

 

 

 

4. Universal gates 

        NAND gates and NOR gates are called universal gates, because any Boolean function can be 

implemented by using only one of these two. Universal gates allow reducing the circuit design 

complexity by reducing the number of different gate types required, and also reducing the number of 

transistors needed (minimize manufacturing costs). 
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5. Simplification (Minimization) of Boolean functions 

     The objective of simplifying logic functions is to reduce the number of terms (reduce 

the number of  gates) to obtain smaller, faster and cheaper circuit. 

 

5.1 Algebraic Simplification (Minimization) 

    It consists in applying the theorems/laws of Boolean algebra (properties or rules) in 

order to   reduce the number of variables or terms. 
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Example 1: 

 

 

 

 

 

 

   

 Example 2: There is also the conjunctive form of the superfluous term. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   5. It is possible to delete a superfluous term (one more term), that is to say already included 

in the meeting of other terms.  

CB  AB                                             

A)  (1 CB   C)  1 ( AB                                              

CBA  ACB  CB  AB                                             

)BB ( AC  CB  AB  AC  CB  BA   C)B,F(A,









                

 C)(B   . B)(A                

)BC(A. C)(B . B)C(A  . B)(A                 

)BC.(A B)C(A . C)(B . B)(A                 

 )B.BC(A . C)(B . B)(A                  

 C)(A . C)(B . B)(A   C)B,F(A,










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5.2 Karnaugh Map (Karnaugh Table) Simplification 

      The algebraic simplification method becomes very difficult and cumbersome if the 

number of variables or terms increase. Karnaugh's method is a faster and can be used to solve 

Boolean functions of up to 6 variables. 

        Adjacency principle 

     Two Boolean terms are adjacent when they contain the same variables and differ in the 

form of exactly  one variable. 
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- In a Karnaugh table, each cell (box) has a number of adjacent cells (boxes). 
 

 
 

 

• When you fill the K-Map (K-Table), you have to either take the minterm or the maxterm. 

Example: 

 
 

 

Passage from the Truth Table to Karnaugh Map (Karnaugh Table): 

• For each combinations which represents a minterm (F=1) corresponds a cell in the K-Map 

(K-Table) which must be put to 1. 

• For each combinations which represents a maxterm (F=0) corresponds a cell in the K-Map 

(K-Table) which must be put to 0. 
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Example: 

 
 

 
 

 

 

 

Passage from the canonical form to the Karnaugh Map (Karnaugh Table): 

 If the logical function is given in the first canonical form (disjunctive), then its 

representation is direct: for each term corresponds to a cell which must be put to 1. 

 If the logical function is given in the second canonical form (conjunctive), then its 

representation is direct: for each term corresponds to a cell which must be put to 0. 
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Example: K-Map 3 variables (Simplification method) 
 

 
 

 The basic idea is to try to make groups the adjacent cells which include 1 (groupings 

the adjacent terms).  

 Try to make groupings with the maximum of cells (16, 8. 4 or 2)  

 In our example we can only make groupings of 2 cells. 

 
 

 Since there are still cells that are outside of a grouping (groups), we redo the same 

procedure: to form groupings (groups).  

 A cell can belong to several groupings (groups). 
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 We stop when there is not 1 outside the groupings (groups). 

 The final function is equal to the sum of the terms after simplification. 

 

 

4. The final logical expression is the sum of the groups after simplification and 

elimination of the variables that change state. 
 

Examples 1: K-Maps 3 variables 

 

 

 

  So, in summary to simplify a function by the Karnaugh Map (K-Map) you must follow 

the following steps:  

1. Fill the table from the truth table or from the canonical form or algebraic expression.  

2. Make groupings: groupings of 16 cells, 8, 4, 2, 1 cell (the same terms can participate 

in several groupings).  

3. In a group: Which contains a single term we can not eliminate variables. Which 

contains two terms we can eliminate a variable (that which changes state). Which 

contains 4 terms we can eliminate 2 variables. Which contains 8 terms we can 

eliminate 3 variables. Which contains 16 terms we can eliminate 4 variables.  
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Examples 2: 4 variables 
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Example 3: 5 variables 

 
 

 

 
 

 

 

 



Chapter 3: Boolean Algebra  

 

 

22 
 

 

 

 

Exercise: Find the simplified form of functions from both K-Maps? 

 

 
 

For example, when dealing with BCD numbers encoded as four bits, those codes (1010, 

1011, 1100, 1101, 1110, 1111) will never exist as long as we are dealing only with BCD 

encoded numbers. These six invalid codes are don’t cares as far as we are concerned. 

 

Exercise: 

Minimize (Simplify) the following functions in SOP minimal form using K-Maps:  

F1 (A,B,C) = ∑ (3) + d (6, 7) 

F2 (A,B,C,D) = ∑ (0, 1, 3, 5, 6, 10, 15) + Φ (2, 4, 7, 11, 14) 
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6. Digital Circuit Design (Study of a logic function) 

     Digital circuit design is fundamental because electronic systems, electrical engineering, 

and computer engineering work on their basis. Boolean Algebra (Digital logic) helps create 

complex circuits based on various functions to execute specific operations. Logic gates are 

the building block of any digital circuit. 

To study and design a digital circuit you must follow the following steps:  

Step 1: Understand the given specifications (understand the functioning of the system)  

Step 2: Find and define the inputs and outputs (draw the block diagram) 

Step 3: Create a truth table 

Step 4: Writing the algebraic expressions of outputs 

Step 5: Simplification (Algebraic or Karnaugh map) 

Step 6: Drawing the circuit diagram (Diagram of logic gates "Logigram") 

 

Example: A safety lock opens according to three keys.  

The functioning of the lock is defined as a follows:  

- The lock is open if at least two keys are used.  

- The lock remains closed in other cases. 

Design the circuit which allows you to control the opening of the lock? 

 

Step 1 & 2: Understand the functioning of the system and find and define the inputs and outputs 

The system has three (3) inputs: each input represents a key. 

We will correspond to each key a logic variable: key 1  A, the key 2  B, the key 3  C 

 If the key 1 is used then the variable A = 1 otherwise A = 0 

 If the key 2 is used then the variable B = 1 otherwise B = 0 

 If the key 3 is used then the variable C = 1 otherwise C = 0 

The system has a single output which corresponds to the state of the lock (open or closed). 

We will correspond to a variable S to design the output: 

S = 1 If the lock is open, 

S = 0 if it is closed 

 S = F (A, B, C) 

 S (A, B, C) = 1 if at least two (2) keys are introduced 

 S (A, B, C) = 0 if not. 
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Step 3 & 4: Truth table and writing the algebraic expression of output 
 

 

 

 

 

 

 

 

 

Step 5: Simplification (K-map) 

 

 
 

Step 6: Drawing the circuit diagram (Diagram of logic gates "Logigram") … 

Exercise: 

Study and design the circuits for the following logic functions:  

1. F1 (a,b,c) = 1  if the number (abc)2 is even 

2. F2 (a,b,c) = 1  if the number (abc)2 is odd 

3. F3 (     ) =      ̅   ̅ 

4. F4 (a,b,c) = 1  if the number (abc)2 is prime 

5. F5 (a,b,c,d) = 1 if the number (abcd)2 is multiple of 3 

 

S( , , ) A . B . C   A . B . C  A . B . C A . B . CA B C    


