
Second year master's degree in

artificial intelligence

Prof. Mustapha Bourahla

1

Logics and Processes Algebra

Exercises (Series 1)

2

Exercise: Using the inference rules draw LTS of :

1. process one [a,b,c] a; (b; stop [] c; stop) endproc

2. process two [a,b,c] a; b; stop [] a; c; stop endproc

3. process3 := a; (b; d; stop [] c; stop)

4. process4 := a; b; d; stop [] a; c; stop

3

Solutions:

En utilisant les règles d’inference dessiner les arbres (STE) de

process one [a,b,c] a; (b; stop [] c; stop) endproc

a; ((b; stop [] c; stop)) --- a > (b; stop [] c; stop)

(b; stop [] c; stop) --- b > stop

(b; stop [] c; stop) --- c > stop

process two [a,b,c] a; b; stop [] a; c; stop endproc

P1 := a; (b; d; stop [] c; stop)

P2 := a; b; d; stop [] a; c; stop

a

b c

a

b

c

a

a

b c

d

Exercises (Series 2)

4

Exercise 1: Give the LTS of: a; (b; stop [] c; stop) and a; b; stop [] a; c; stop.

Then give a conclusion

Exercise 2: Give the LTS of each: A:= mon; (gom;stop [] choc; stop), B :=

mon; gom ;stop [] mon; choc; stop, C := mon; (i; gom; stop [] mon; choc;

stop), and D := mon; (i; gom; stop [] i; mon; choc; stop)

Exercise 3: Marie and Abdel always eat together. They have three actions:

Breakfast (b), lunch (l), dinner(d):

Marie:= b; l; d; stop, Abdel:= b; l; d; stop, give the LTS of Marie || Abdel

Exercise 4: However, if Abdel is not used to having lunch:

Marie:= b; l; d; stop, Abdel:= b; d; stop, give the LTS of Marie || Abdel

Exercises (Series 3):

5

Exercise 1: prove the following equivalences:

• ((a; stop || a; stop) || a; stop) = a; stop

• ((hide a in (a; stop || a; stop)) || a; stop) = i; stop

• (hide a in ((a; stop || a; stop) || a; stop)) = i; stop

Exercice 2: Marie and Abdel have nothing to do with each

other. They have two actions: Breakfast (b), lunch (l): Marie:=

b; l; stop, Abdel:= b; l; stop. find Marie ||| Abdel

Exercise 3: Marie and Abdel make breakfast and dinner

separately, however they always eat lunch together : Marie:= b;

l; d; stop, Abdel:= b; l; d; stop. Give Marie |[l]| Abdel

Exercise 4: compute (a; b; stop [] c; d; stop) |[a,b]| (a; b; stop []

d; f; stop) and give its LTS

Exercise 5: compute a; b; c; stop |[b]| a; b; d; stop

Exercises (Series 4)

6

Exercise 1: verify

1. (a; b; stop) |[b]| (c; b; stop) = (a; c; b; stop) [] (c; a; b; stop)

2. (i; b; stop) |[b]| (c; b; stop) = (i; c; b; stop) [] (c; i; b; stop)

3. (i; b; stop) |[b]| (i; b; stop) = (i; i; b; stop) [] (i; i; b; stop) =

(i; i; b; stop)

4. (a; b; stop) |[b]| (b; c; stop) = a; b; c; stop

5. (a; b; stop) |[a, b]| (b; a; stop) = stop = (a; b; stop) || (b; a;

stop)

6. (a; b; stop [] d; f; stop) |[a, b]| (a; b; c; stop [] i; stop) = (a; b;

c; stop [] d; (f; i; stop [] i; f; stop) [] i; d; f; stop)

Exercises (Series 5)

Exercise 1: Hello World!

Consider a system without subsystem and that performs a single actions: saying "Hello
World". Give the code for this scenario and represent it graphically. Execute it.

Exercise 2: Greatest Common Divisor

Design a Scola model that calculates the greatest common divisor (GCD) of two
integers. Execute it with a=96 and b=81.

Hint: recall that GCD(a, a) = a and that GCD(a, b) = GCD(a, b-a) if a<b.

Exercise 3: Syracuse Problem (Collatz conjecture)

Design a Scola model that takes any integer n and performs the following operations:

• If n is equal to 1, the execution stops.

• If n is even (n modulo 2 = 0), then the execution goes on with n/2.

• If n is odd (n modulo 2 = 1), then the execution goes on with 3n+1.

Execute this model for n=19.

Scola operations for multiplication and the modulo are respectively mul and mod.

7

Hello World! (1)

SayHelloWorld

Initial Terminal

The system is made of a single (implicit) block.

The scenario consists in starting from an initial state, going through a task

SayHelloWorld and ending up into a terminal state.

8

Hello World! (2)

scenario HelloWorld

state Initial

task SayHelloWorld end state

Terminal

next Initial SayHelloWorld

next SayHelloWorld Terminal

end

• Tasks are container for instructions. This is the reason why their declarations end with the

keyword "end".

• Next instructions represent arrows. They are used to chain states, tasks and gateways.

• The order of declaration of elements is irrelevant:

scenario HelloWorld

state Initial

next Initial SayHelloWorld task

SayHelloWorld end next

SayHelloWorld Terminal state

Terminal

end

9

Hello World! (3)

Scola models describe the evolution of processes. A process has a number, possibly

a parent process and a number of child processes. Processes can be dynamically

created by the execution of a model. At any step of the execution, a process is either

inactive, or it is located on a state, a task or a gateway.

1

Step 1: a process number 1 is created

on the initial state.

1

Step 2: the process moves to the task

SayHelloWorld and performs this

task.

1

Step 3: the process moves to the terminal

state. Its execution is finished.

10

Greatest Common Divisor (1)

S
t
o
r
e

Initial

IsDone

ASubB

asubb:

b<a a  a-b


done: a=b

bsuba: b  b-a

a<b

BSubA

Terminal

11

Greatest Common Divisor (2)

scenario GCD as Store

state Initial

test IsDone

case done (eq a b)

case asubb (lt b a)

case bsuba (lt a b)

end

task ASubB

set a (sub a b)

end

task BSubA

set b (sub b a)

end

state Terminal

next Initial IsDone

next Reset Increment

next IsDone.done Terminal

next IsDone.asubb ASubB

next IsDone.bsuba BSubA

next ASubB IsDone

next BSubA IsDone

end

12

Greatest Common Divisor (3)

block Store

integer a 96

integer b 81

end

scenario GCD as Store

state Initial

test IsDone

case yes (eq a b)

case no (df a b)

end

task Step

if (lt a b) then

set b (sub b a)

else

set a (sub a b)

end

state Terminal

next Initial IsDone

next IsDone.yes Terminal

next IsDone.no Step

next Step IsDone

end

Initial

Terminal

S
t
o
r
e

Step

no:

an



yes:

a=b

if b<a:

a.  a-b

else

b.  b-a
IsDone

13

Syracuse (1)

Initial Terminal

S
t
o
r
e

odd:

n%2=1 and

n1
Odd


done: n=

Even

even:

n%2=0 n  n/2

n  3*n+1

Recursion

14

Syracuse (2)

scenario Syracuse as Store

state Initial

test Recursion

case done (eq n 1)

case even (eq (mod n 2) 0)

case odd (and (eq (mod n 2) 1) (df n 1))

end

task Even

set n (div n 2)

end

task Odd

set n (add (mul n 3) 1)

end

state Terminal

next Initial Recursion

next Recursion.done Terminal

next Recursion.even Even

next Recursion.odd Odd

next Even Recursion

next Odd Recursion

end Whether this series converges to 1 for all

value of n is still an open question.

15

Exercises (Series 6)

Exercise 1: At the restaurant.

At the restaurant, the client orders a pizza to the waiter. The waiter transmit the

order to the cook, who bakes the pizza. Once the pizza is baked, the cook gives it

to the waiter, who brings it to the client. Eventually, the client eats the pizza.

Represent and execute this scenario.

Exercise 2: Car assembly

In a car assembly line, the first station paints the car's body, the second assemble

the engine and the third the wheels.

Represent and execute this scenario.

16

Exercises (Series 7)

Exercise 1: Life-Cycle.

The life-cycle of a product is usually made of three phases: design, operation and

decommissioning. The operation phase is itself decomposed into two sub-phases:

production and maintenance.

Give the code that represent such a life-cycle and represent it graphically. Execute it.

Exercise 2: Ternary Meter

Design a Scola model to represent a meter with three wheels (like a kilometric meter)

that counts in base 3.

Exercise 3: Tapes and Siphons

Design a Scola model that, at the one end, creates as many processes as the

analyst wishes (a tape) and, at the other end, kills these processes (a siphon).

Exercise 4: Travel Reservation

Design a Scola model to represent a travel reservation (flight + hotel)

17

Life-Cycle (1)

Initial Design

Operation

Terminal

Decommissioning

Maintenance

Production

IsObsolete


reject

accept

18

Life-Cycle (2)

This scenario applies on a system made of a single (implicit) component. It describes

the life-cycle of this system.
It involves the sub-scenario Production and the choice gateway IsObsolete.

Choice gateways describe non-deterministic choices: it is up to the user to tell the

simulator which branch to take during the simulation.

19

Life-Cycle (3)

scenario LifeCycle

state Initial

task Design end

scenario Production

task Operation end

choice IsObsolete

branch accept

branch reject

end

task Maintenance end

next Operation IsObsolete

next IsObsolete.reject Maintenance

next Maintenance Operation

end

task Decommissioning end

state Terminal

next Initial Design

next Design Production.Operation

next Production.IsObsolete.accept Decommissioning

end

• Sub-scenarios are like

macro-states in statecharts

20

Life-Cycle (4)

1

1

1

1

1

2

3

4

21

Life-Cycle (5)

1

1

1

1

and soon…

5

6

7

8

22

Tapes and Siphons (1)

Initial Tape

ready
to_kill

Basin SiphonReset


tape

 
created

readysiphon

A model that, at the one end, creates as many processes as the analyst
wishes (Tape) and, at the other end, kills these processes (Siphon).

23

Tapes and Siphons (2)

scenario TapeAndSiphon

state Initial

fork Reset

branch tape

branch siphon

end

fork Tape

branch ready

branch created

end

task Basin end

join Siphon

branch ready

branch to_kill

end

next Initial Reset

next Reset.tape Tape

next Reset.siphon Siphon.ready

next Tape.ready Tape

next Tape.created Basin

next Basin Siphon.to_kill

next Siphon Siphon.ready

end

24

Travel Reservation (1)

In this example, the fork gateway Start creates two processes out of one while

the join gateway Finalize creates one process out of two.

Initial

BookHotel

Start

BookFlight

TerminalFinalize

 

hotel hotel

flight flight

25

Travel Reservation (2)

scenario TravelReservation

state Initial

fork Start

branch hotel

branch flight

end

task BookHotel end

task BookFlight end

join Finalize

branch hotel

branch flight

end

state Terminal

next Initial Start

next Start.hotel BookHotel

next Start.flight BookFlight

next BookHotel Finalize.hotel

next BookFlight Finalize.flight

next Finalize Terminal

end

26

Travel Reservation (3)

1
1

2

3

4

1

2

3

2

3

5

6

2

3

4

27

Travel Reservation (4)

1 2
1

2

3

4

2 1

3

4

3

4

5

6

3

2

3

2

2

4

5

4
6

28

Travel Reservation (5)

7

8

9

1

0

5

4

5

4

11 7 8

5

7

7

4

3

6

4

5
3

6

Is there a problem?

29

Travel Reservation (6)

scenario TravelReservation

state Initial

split Start

branch hotel

branch flight

end

task BookHotel end

task BookFlight end

merge Finalize

branch hotel

branch flight

end

state Terminal

next Initial Start

next Start.hotel BookHotel

next Start.flight BookFlight

next BookHotel Finalize.hotel

next BookFlight Finalize.flight

next Finalize Terminal

end

Initial

BookHotel

BookFlight

Terminal



Start



Finalize

30

Travel Reservation (7)

7

8

9

1

0

3

4

3

4

11 1 2

5

2

1

4

3

6

4

5
3

6

3 is waiting for

4

6 is waiting for

5

2 is recreated out of 5

and 6

1 is recreated out of 3

and 4

31

Exercises (Series 8)

Exercise: Dynamic Car Assembly

Consider a car assembly line. The process is as follows:

• A new car enters into the assembly line.

• It is then moved to a first station where is painted.

• It is then moved to the second station where the engine is assembled.

• It is then move to the third station where the wheels are assembled in two steps:

first the front train, then the rear train.

•The car is then delivered (taken out the production line).

Each car must have its own series number.

There can be at most one car at each place of the assembly line, i.e. at the beginning

of the line and in each station.

Hint: Use test gateway to prevent a car to be moved to a place where there is already

another car. The Boolean expression (is_block path) can be used to check the

presence of a block at the give place.

32

Linkk to Dynamic Car Assembly Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/DynamicCar

Assembly.pdf

33

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/DynamicCarAssembly.pdf

Exercises (Series 9)

Exercise: Largest port

A block Store contains an arbitrary number of integer ports. Design a scenario to get

the name of the port with the largest value.

Hint: use instruction if condition then instruction and instruction block

begin instructions end

34

Linkk to Dynamic Largest Port Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/LargestPort.p

df

35

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/LargestPort.pdf

Exercises (Series 10)

Exercise 1: Dynamic Car Assembly (revisited)

Design a model that use fail instructions rather than test gateways to solve the

dynamic car assembly exercise.

Exercise 2: Master Thesis

Bob is doing his master project under the supervision of Alice. He has to do some

research and in parallel to write his master thesis. This requires some iterations with

Alice until she gives eventually her approval.

Design a model to represent this process. First, just using ports, without any

component creation. Second, with component creation and moving. Third with

component creation, sending and reception.

36

Linkk to Dynamic Car Assembly Revisited

Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/DynamicCar

AssemblyRevisited.pdf

Linkk to Master Thesis Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/MasterThesis

.pdf
37

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/DynamicCarAssemblyRevisited.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/MasterThesis.pdf

Exercises (Series 11)

in out

Exercise 1: Queues

In an shop, clients must choose one of two queues at the cashier. They are served in

the order of arrival in the queue they choose.

Design a model for such a system and simulate it.

Hint: use three processes, one to create new clients and one for each queue.

Exercise 2: Maze

Design a Scola model to get out of the following maze.

Hint: recall Tom Thumb.

38

Linkk to Queues Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/Queues.pdf

Linkk to Maze Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/Maze.pdf

39

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Queues.pdf

Exercises (Series 12)

Exercise 1: Eratosthenes

Design a model to calculate prime numbers lower than 100 using Eratosthenes' Sieve.

The idea is to have two nested loops: the outer one to generate candidate numbers

(from 3 to 100 in order) and the inner one to test candidates. The test consist in

comparing (via a modulo) the candidate with all prime numbers found so far.

Hint: Prime numbers are store as integer ports p1=2, p2=3, p3=5… into a blockPrimes.

Exercise 2: Ferry

A ferry carries trucks from the left bank to the right bank of a river. It goes forth and

back as long as there are trucks to carry. It can contain only one truck at a time.

Design a Scola model to represent this ferry.

40

Linkk to Eratosthenes Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/Eratosthenes.

pdf

Linkk to Ferry Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/Ferry.pdf

41

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Eratosthenes.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Ferry.pdf

Exercises (Series 13)

Exercise 1: Two-Way Switch

Modify the code proposed in this section so to model a two-way switch.

Switch 1 Switch

2

LampPhas

e

Neutral

Exercise 2: Wages

Alice, Bob and Carol are salespersons. Their monthly wages are calculated as follows.

Fixed salary + 4% of the growth revenue they generate + 800€ if the sum of thetwo

preceding numbers is below 9000€ and 400€ if it above. Design a model tocalculate their

wages.
Name Gr. Rev. Salary Var. Part Bonus Total

Alice 47 500 8 000 1 900 400 10 300

Bob 38 900 6 700 1556 800 9 056

Carol 51 600 9 000 2 064 400 11 464

42

Linkk to Two-Way Switch Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/TwoWaySwi

tch.pdf

Linkk to Wages Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/Wages.pdf

43

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/TwoWaySwitch.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Wages.pdf

Exercises (Series 14)

Exercise 1: 2-out-of-3 system

A 2-out-of-3 system is a system that works if at least two out of its 3 components are

working. Design a model for such a system and simulate it.

Exercise 2: Bridge

Components A, B, C and D of the following reliability block diagram may fail and

be repaired. The system described by the diagram is working if there is a working

path from the source node to the target node. Design a model for such a system

and simulate it.

A

B

C

D

source target

44

Linkk to 2-out-of-3 system Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/2OutOf3Syst

em.pdf

Linkk to Bridge Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod

_folder/content/0/ScolaModels/Bridge.pdf

45

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/2OutOf3System.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Bridge.pdf

Exercises (Series 15)

Exercise 1: Electric Circuit

Design the complete model of the electric circuit presented in this section. First

without cloning nor classes, then with cloning and finally with classes.

Exercise 2: Bridge

Same question with the Bridge exercise of the previous section.

Exercise 3: Collaborative Report

Alice and Bob write a report. Alice makes version 0, then each of them read the

report in turn. After reading they can decide either to finalize it, which stops the

writing process, or to improve it and to pass it to their colleague.

Design a object-oriented Scola model for this scenario.

46

Linkk to Electric Circuit (Object Oriented) Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/ElectricCircuitWithClas

s.pdf

Linkk to Electric Circuit (Prototype Oriented) Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/ElectricCircuitWithClon

ing.pdf

Linkk to Bridge (Object Oriented) Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/BridgeObjectOriented.p

df

Linkk to Bridge (Prototype Oriented) Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/BridgePrototypeOriente

d.pdf

Linkk to Collaborative Report Model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/CollaborativeReport.pdf

47

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/ElectricCircuitWithClass.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/ElectricCircuitWithCloning.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/BridgeObjectOriented.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/BridgePrototypeOriented.pdf
https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/CollaborativeReport.pdf

Exercises (Series 16)

Exercise: Given the LOTOS process:

process gate_and = a ?aa:Bit; b ?bb:Bit; c !and(aa, bb); stop

Give its LTS

Give its equivalent SCOLA Model and simulate it

48

49

a?aa:Bit is equivalent to a!0 [] a!1

choice ABIT_Value

branch Zero

branch One

end

choice BBIT_Value

branch Zero

branch One

end

task AZero set a 0 end

task AOne set a 1 end

task BZero set b 0 end

task BOne set b 1 end

next ABIT_Value.Zero AZero

next ABIT_Value.One Aone

next BBIT_Value.Zero BZero

next BBIT_Value.One BOne

state initial

next initial ABIT_Value

next AZero BBIT_Value

next AOne BBIT_Value

50

Link to Scola model:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/and_gate.pdf

51

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/and_gate.pdf

Exercises (Series 17)

52

Exercise: Write Scola models for these processes:

1. Process1 = a; (b; stop [] c; stop)

1. Process2 = a; b; stop [] a; c; stop

2. Process3 = a; (b; d; stop [] c; stop)

3. Process4 = a; b; d; stop [] a; c; stop

/* process1 = a; (b; stop [] c; stop) */

domain Action {NONE, a, b, c, stop} end

block P1

Action action NONE

end

scenario B as Process1

task A set action a end

task B set action b end

task C set action c end

task Stop set action stop end

choice CH

branch B1

branch B2

end

state S0

state exit

next S0 A

next A CH

next CH.B1 B

next B Stop

next CH.B2 C

next C Stop

next Stop exit

end

Link:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Process1.pdf 53

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Process1.pdf

Exercises (Series 18)

54

Exercise: Give LTS of these processes and then write

their Scola models:

Process5 = a; b; c; stop |[b]| a; b; d; stop

Process6 = (a; b; stop) |[b]| (c; b; stop)

Process7 = Marie et Abdel font séparément le petit

déjeuner et le souper, cependant ils déjeunent toujours

ensemble: Marie := pd; d; s; stop, Abdel := pd; d; s;

stop. Donc Process7 = Marie |[d]| Abdel = (pd; d; s;

stop) |[d]| (pd; d; s; stop)

55

S0

S1 S2

S5

S7

S3

S6

a; b; c; stop |[b]| a; b; d; stop

b; c; stop |[b]| a; b; d; stop a; b; c; stop |[b]| b; d; stop

b; c; stop |[b]| b; d; stop

c; stop |[b]| d; stop

a a

a a

b

c
d

stopstop

stop |[b]| d; stop
c; stop |[b]| stop

S8
S9

d
c

Process5 = (a; a; b [] a; a; b) ; (c; d; stop [] d; c; stop) = a; a; b ; (c; d; stop [] d; c; stop)
car a [] a = a

S4 b; c; stop |[b]| b; d; stop

b

S10

stop |[b]| stop stop |[b]| stop

Link to Scola model of Process5:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/con

tent/0/ScolaModels/Process5.pdf

56

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Process5.pdf

57

S0

S1 S2

S5

S3
S4

S6

(a; b; stop) |[b]| (c; b; stop)

(a; b; stop) |[b]| (b; stop)(b; stop) |[b]| (c; b; stop)

(b; stop) |[b]| (b; stop) (b; stop) |[b]| (b; stop)

(stop) |[b]| (stop)

ca

ac

bb

stop

Process6 = (a; c; b; stop) [] (c; a; b; stop)

Link to Scola model of process6:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/con

tent/0/ScolaModels/Process6.pdf

58

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Process6.pdf

59

S0

S2

S4S3

S1

S5

S9

S6 S7

S8

S10

(pd; d; s; stop) |[d]| (pd; d; s; stop)

(pd; d; s; stop) |[d]| (d; s; stop)

(d; s; stop) |[d]| (pd; d; s; stop)

(d; s; stop) |[d]| (d; s; stop)(d; s; stop) |[d]| (d; s; stop)

(s; stop) |[d]| (s; stop)

(s; stop) |[d]| (stop)(stop) |[d]| (s; stop)

(stop) |[d]| (stop) (stop) |[d]| (stop)

pd

pd

pd

pd

dd

s
s

s
s

stopstop

Process7 = pd; pd; d; (s; s; stop [] s; s; stop) [] pd; pd; d; (s; s; stop [] s; s; stop) =
pd; pd; d; s; s; stop

Link to Scola model of process7:

https://elearning.univ-

msila.dz/moodle/pluginfile.php/712399/mod_folder/con

tent/0/ScolaModels/Process7.pdf

60

https://elearning.univ-msila.dz/moodle/pluginfile.php/712399/mod_folder/content/0/ScolaModels/Process7.pdf

