Ministry of Higher Education and Scientific Research

University Mohamed Boudiaf of M'sila

Faculty of Mathematics and Computer Science

Department of Computer Science

Mechanics of a Particle Problems & Exercises (of Chap 0) Vectors, Coordinate systems Z. Elbahi (2024/2025)

PART 1: Vectors

Exercise 1

- 1- Find magnitude and direction of a vector, $\mathbf{A} = (\mathbf{6} \ \mathbf{i} \mathbf{8} \ \mathbf{j})$
- 2- Obtain the magnitude of **2A 3B**; if $\mathbf{A} = \vec{i} + \vec{j} 2\vec{k}$; $\mathbf{B} = 2\vec{i} \vec{j} + \vec{k}$
- 3- Resolve a weight of 10 N in two directions which are parallel and perpendicular to a slope inclined at 30° to the horizontal.
- 4- Resolve horizontally and vertically a force F = 8 N which makes an angle of 45° with the horizontal.

Exercise 2

In a system of orthonormal axes, the following vectors are given:

$$\vec{V}_1 = 3\vec{\iota} + 4\vec{j}$$
 and $\vec{V}_2 = -\vec{\iota} + 2\vec{j}$.

- 1- Calculate the magnitudes of the vectors $\|\vec{V}_1\|$, $\|\vec{V}_2\|$, and $\|\vec{V}_1 + \vec{V}_2\|$.
- 2- Determine the angle $\boldsymbol{\theta}$ between the vectors \vec{V}_1 and \vec{V}_2 .
- 3- Determine the unit vector \vec{u} carried by the vector $(\vec{V}_1 + \vec{V}_2)$.
- 4- Determine the angles α , β and γ that \vec{u} makes with the coordinate axes (*ox*), (*oy*), and (*oz*), respectively.
- 5- Calculate the components of the vector $\vec{V}_3 = \vec{V}_1 \wedge \vec{V}_2$.
- 6- Consider the triangle (OAB) defined by the endpoints of vectors \vec{V}_1 and \vec{V}_2 : $\vec{V}_1 = \vec{OA}$ and $\vec{V}_2 = \vec{OB}$. Show that the area of the triangle (OAB) can be expressed in terms of $\|\vec{V}_1\|$, $\|\vec{V}_2\|$, and $\boldsymbol{\theta}$.

Verify that it can also be obtained using the relation: $\frac{1}{2} \| \vec{V}_1 \wedge \vec{V}_2 \|$.

Exercise 3

In the three-dimensional orthonormal coordinate system (O, $\vec{i}, \vec{j}, \vec{k}$), we have three vectors:

$$\vec{U} = \vec{\iota} + \vec{j} + \vec{k}; \vec{V} = 2\vec{\iota} - \vec{j} + 2\vec{k}; \vec{W} = -2\vec{k}$$

- 1. Draw the three vectors \vec{U}, \vec{V} , and \vec{W} .
- 2. Calculate the magnitudes of $\|\vec{U}\|$, $\|\vec{V}\|$, and $\|\vec{W}\|$.
- 3. Determine the components of the unit vector \vec{u} carried by \vec{U} .
- 4. Graphically represent the vector $(\vec{U} \vec{V})$ and calculate its magnitude.
- 5. Calculate:

- a) The dot product $\vec{U} \cdot \vec{V}$.
- b) The cross product $\vec{U} \wedge \vec{V}$.
- c) The double cross product $(\vec{U} \land \vec{V}) \land \vec{W}$.
- d) The scalar triple product $(\vec{V} \land \vec{W}) \cdot \vec{U}$.
- 6. Determine the angle between \vec{U} and \vec{V} .

Exercise 4

Show that the magnitudes of the sum and the difference of two vectors $\vec{A} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$ and $\vec{B} = \begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix}$, expressed in

rectangular coordinates, are respectively:

$$S = [(A_x + B_x)^2 + (A_y + B_y)^2 + (A_z + B_z)^2]^{1/2}$$
$$S = [(A_x - B_x)^2 + (A_y - B_y)^2 + (A_z - B_z)^2]^{1/2}$$

Exercise 5

Show that the area of a parallelogram is $|\vec{A} \wedge \vec{B}|$, where $|\vec{A}|$ and $|\vec{B}|$ are the sides of the parallelogram formed by the two vectors.

b/ Prove that vectors \vec{A} and \vec{B} are perpendicular if: $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$.

Exercise 6

Let's consider the two vectors $\vec{A} \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix}$ and $\vec{B} \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$. Find α ; β such that \vec{B} is parallel to \vec{A} , then determine the unit vector for each of the two vectors.

Exercise 7

Consider the scalar field $(x, y, z) = 3x^2y + y^2z^2$ and the vector field given by:

$$\vec{V}(x, y, z) = xz^2\vec{\iota} + (2x^2 - y)\vec{j} + yz^2\vec{k}$$

Calculate: the gradient ∇f , the divergence div (\vec{V}) , the curl rot (\vec{V}) .

PART 2: Coordinate System

Exercise 8

- 1- Convert the following vector from Cartesian coordinates (\vec{i}, \vec{j}) to polar coordinates $(\vec{u}_{\rho}, \vec{u}_{\theta})$
- $\vec{V} = X \vec{i} + Y \vec{j}$ 2- Convert the following vector from Cartesian coordinates $(\vec{i}, \vec{j}, \vec{k})$, to cylindrical coordinates $(\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{u}_{Z})$. $\vec{V} = X \vec{i} + Y \vec{j} + Z \vec{k}$

Exercise 9

Convert the equation written in Spherical coordinates into an equation in Cartesian coordinates.

$$\csc \theta = 2 \cos \phi + 4 \sin \phi$$

Exercise 10

Convert the cylindrical coordinates ($\rho = 5$, $\theta = 2\pi/3$, z = -7) into Cartesian coordinates (x, y, z).