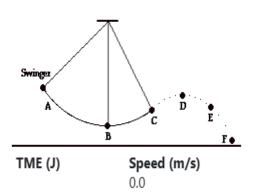
Ministry of Higher Education and Scientific Research

University Mohamed Boudiaf of M'sila

Faculty of Mathematics and Computer Science

Department of Computer Science

Mechanics of a Particle (Physics 1)


Problems & Exercises (of Chap 3)

Work and Energy

Z. ELBAHI (2024/2025)

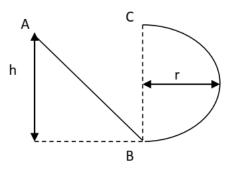
Exercise 1

A child is at the park with her father. The **26-kg** child is on a swing following the path as shown. The child has a speed of **0 m/s** at position **A** and is at a height of **3.0m** above the ground. At position **B**, the child is **1.2 m** above the ground. At position **C** (**2.2 m** above the ground), the child projects from the seat and travels as a projectile along the path shown. At point **F**, the child is a mere picometer above the ground. Assume negligible air resistance throughout the motion.

Use this information to complete the table below. (g = 9.8 m/s²)

Position	Height (m)	PE(J)	KE(J)	TME(J)	Speed ($ m m/s$)
A	3.0				0.0
В	1.2				
С	2.2				
F	0.0				

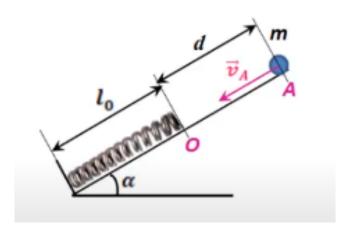
Exercise 2


A solid body **S** with mass m attached on one side to a spring with stiffness K, and the other side of the spring is fixed. The body is moved horizontally from its equilibrium position by a distance x and then released ($\mu = \tan \varphi$: coefficient of friction).

- 1- Illustrate the forces acting on body **S**.
- 2- Calculate the velocity V_B corresponding to the movement of **S** from its equilibrium position.

Exercise 3

A ball slides without friction inside a gutter.


Find the smallest height h_{min} from which the ball must be launched to reach point C without leaving the gutter. $(a = \frac{v_c^2}{r})$

Exercise 4

A material point of mass m is launched with an initial velocity \vec{v}_A along an inclined plane making an angle α with the horizontal. After traveling a distance d, the material point reaches a spring with a natural (unstretched) length l_0 and a spring constant k. The spring undergoes compression due to the material point.

- 1. Determine the **forces acting** on the material point.
- 2. Calculate the **work** done by all these forces along the trajectory from the initial position **A** to the point where the spring is compressed.
- 3. Calculate the **maximum velocity** achieved by the material point.
- 4. Determine the **maximum compression** of the spring.

