Ministry of Higher Education and Scientific Research

University Mohamed Boudiaf of M'sila

Faculty of Mathematics and Computer Science

Department of Computer Science

Mechanics of a Particle (Physics 1, 1st year)

1st EXAM. Duration: 1H30

Date: 16/01/2025

Exercise 1: (06 points)

- 1. Starting from the Definition of the uniform rectilinear motion, find the time equation x(t) of URM (02 points).
- 2. The expressions of the two unit vectors in polar coordinates $\overrightarrow{u_{\rho}}$ and $\overrightarrow{u}_{\theta}$ in terms of the unit vectors $\overrightarrow{\iota}$ and $\overrightarrow{\jmath}$ are:

$$\begin{cases} \overrightarrow{u_{\rho}} = \cos\theta \, \vec{i} + \sin\theta \, \vec{j} \\ \overrightarrow{u_{\theta}} = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j} \end{cases}$$

Using these relations, express velocity and acceleration in polar coordinates (04 points)

Exercise 2 (07 points)

A material point describes a trajectory in space characterized by the following equations:

$$x(t) = R \cos \theta(t)$$
 $y(t) = R \sin \theta(t)$ $z(t) = h \theta(t)$

Where **R** and **h** are constants.

- 1. Find the components of the velocity and acceleration vectors in Cartesian coordinates. (02 points)
- 2. Find the components of the velocity and acceleration vectors in cylindrical coordinates and determine the magnitude of the velocity vector. (03 points)

Assume that $\theta(t)$ is a linear function of time, $\theta(t) = \omega t$, where ω is constant.

- 3. Determine the nature of the trajectory (Without proof). (01 point) (01 point)
- **4.** Calculate the time at which the material point reaches a height z = 5h, expressed in terms of ω

Exercise 3: (07 points)

A mass m = 5 kg is placed at the top of an inclined plane at an angle α with respect to the horizontal (Figure). The coefficient of static friction between the contact surfaces is $\mu_s = 0.4$, and the coefficient of kinetic friction is $\mu_k = 0.35$. ($\mathbf{g} = 9.8 \text{ m/s}^2$)

1- What is the maximum value of the angle α that allows the mass to remain stationary at the point where it is placed? (03 points)

The mass m is pushed downward with a constant force $F_1 = 7N$.

2- What will be the acceleration of the mass m? (02 points)

When the mass m reaches the bottom of the plane, it is pulled upward with a force $F_2 = 40 N$.

3- What will be the new acceleration of the mass m? (1 point)

Figure

GOOD LUCK.

ELBAHI.Z

التمرين 1

- 1) انطلاقا من تعريف الحركة المستقيمة المنتظمة، أوجد المعادلة الزمنية x(t) للحركة المستقيمة المنتظمة.
 - عبارتا أشعة الواحدة في الإحداثيات القطبية $\overrightarrow{u}_{ heta}$ و $\overrightarrow{u}_{ heta}$ بدلالة أشعة الواحدة \vec{i} و \vec{i} هما:

$$\begin{cases} \overrightarrow{u_{\rho}} = \cos\theta \, \vec{i} + \sin\theta \, \vec{j} \\ \overrightarrow{u_{\theta}} = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j} \end{cases}$$

باستخدام هاتين العبارتين، أوجد عبارة السرعة والتسارع في الإحداثيات القطبية.

التمرين 2

نقطة مادية تصف مسارًا في الفضاء يتميز بالمعادلات التالية

$$x(t) = R \cos \theta(t)$$
 $y(t) = R \sin \theta(t)$ $z(t) = h \theta(t)$

حيث R و h ثابتان.

- 1. أوجد مركبات شعاع السرعة والتسارع في الإحداثيات الكارتيزية.
- 2. أوجد مركبات شعاع السرعة والتسارع في الإحداثيات الأسطوانية وحدد طويلة شعاع السرعة.

نفترض أن $\theta(t)$ هي دالة خطية للزمن، ω خيث ω ثابتة.

- 3. حدّد طبيعة المسار (بدون برهان)
- 4. أحسب الزمن الذي تصل فيه النقطة المادية إلى ارتفاع z=5h معبرًا عنه بدلالة ω

التمرين 3

كتلة m=5~kg موضوعة في أعلى سطح مائل بزاوية m=5~kg بالنسبة للأفق كما هو موضح في الشكل. معامل الاحتكاك السكوني بين السطحين المتلامسين هو $\mu_s=0.4$ ومعامل الاحتكاك الحركي هو $\mu_k=0.35$

- m الكتلة m إلى الأسفل بقوة ثابتة m ما هو تسارع الكتلة m
- $F_2=1$ عندما تصل الكتلة m إلى أسفل السطح المائل، يتم سحبها إلى الأعلى بقوة m عندما m عندما m عندما الكتلة m

ما هو التسارع الجديد للكتلة؟

حظا موفقا، الباهي ز