Contents

1	REA	L FUNCTIONS OF ONE REAL VARIABLE	1
	1.1	General	1
		1.1.1 Graph of a real function :	1
		1.1.2 Direct image , Reciprocal image :	2
	1.2	Even functions, odd functions:	3
	1.3	Periodic functions:	3
	1.4	Bounded Functions :	4
	1.5	Monotone functions:	5
	1.6	Local maximum , local minimum	5
	1.7	Limit of a function:	6
	1.8	Left and Right-Hand Limits :	8
	1.9	Limits theorem	9
	1.10	Operations on limits:	10
	1.11	Continuous functions	11
		1.11.1 Continuity at a point:	11
		1.11.2 Right-continuous and left-continuous:	12
	1.12	Operations on continuous functions:	13
	1.13	Extension by continuity	14
	1.14	Continuous function on an interval	15
	1.15	Theorem for continuous functions on a closed interval : .	15
	1.16	Discontinuity of first and second species	16
	1.17	The intermediate value theorem	17
	1.18	Uniform continuity	18
	1.19	Lipschitz Function:	20
		Heine's theorem:	21
	1.21	Continuous reciprocal function	21
	1.22	Order of a variable-equivalence (Landau's notation):	22

	1.22.1 Negligible function	ons:	•	•	•••	•	 •	•	•	•	•	 •	•	•	22
1.23	Equivalent functions .			•		•		•	•	•	•	 •	•	•	23

Chapter 1

REAL FUNCTIONS OF ONE REAL VARIABLE

1.1 General

Definition domain of a function :

Let $f : E \to \mathbb{R}$ ($E \subset \mathbb{R}$) a function definition domain of f is

$$D_f = \{x \in E/f(x) \text{ exist }\}$$

Example:

$$f(x) = \frac{1}{x+1}, \quad D_f = \mathbb{R} - \{1\}.$$

1.1.1 Graph of a real function :

Definition 1.1.1. Graph of a function called the representative curve noted G_f of a function $f : D_f \subset \mathbb{R} \to \mathbb{R}$ is the set of points (x, y).

$$G_f = \{ (x, y) \in D_f \subset \mathbb{R} / \quad y = f(x) \}.$$

1.1.2 Direct image, Reciprocal image:

Let $f : E \to \mathbb{R}$ a function $E \subset \mathbb{R}$ and A is a part of E.

* The direct image of A by f is the set denoted by f(A) defined by

$$f(A) = \{ f(x) \in \mathbb{R} / x \in A \}.$$

* Let $B \subseteq \mathbb{R}$ the reciprocal image of *B* by *f* is the set denoted by $f^{-1}(B)$ defined by

$$f^{-1}(B) = \{x \in E/f(x) \in B\}$$

Example:

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

- 1. Let A = [-1, 1]The direct image of A is f(A) = f([-1, 1]) = [0, 1]. $f([0, +\infty[) = [0, +\infty[.$ $f(]-\infty, -1]) = [1, +\infty[.$
- 2. Let $B = \{-2\} \Rightarrow f^{-1}(\{-2\}) = \emptyset$ $B = \{1\} \Rightarrow f^{-1}(\{1\}) = \{-1, 1\}.$

Remark:

 $f^{-1}(\{y\})$ can be empty where containing several elements. **Example:**

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sin x$$

$$f^{-1}(\{1\}) = \{x \in \mathbb{R}, \sin x = 1\} = \left\{\frac{\pi}{2} + 2k\pi\right\} \text{ with } k \in \mathbb{Z}.$$
$$f^{-1}(\{0\}) = \{x \in \mathbb{R}, \sin x = 0\} = \{k\pi, k \in \mathbb{Z}\}.$$
$$f^{-1}(\{3\}) = \emptyset.$$

1.2 Even functions, odd functions:

Let $f: E \to \mathbb{R} \ (E \subset \mathbb{R})$

Definition 1.2.1. A function *f* defined on an interval *E* is called even (resp odd) if :

$$\forall x \in I : f(x) = f(-x)(\text{ resp } f(x) = -f(-x) \text{ or } -f(x) = f(-x))$$

Example:

1. $f(x) = x^2$ and $f(x) = \cos(x)$ are even.

$$f(-x) = (-x)^2 = x^2$$

2. $f(x) = x^3$ and $f(x) = \tan(x)$ are odd.

* When the function f is a even, the points M(x, f(x)) and M'(-x, f(-x)) are symmetrical about the axis y'Oy.

* When the function f is odd, the points M(x, f(x)) and M'(-x, f(-x)) are symmetrical about the origin.

1.3 Periodic functions:

Definition 1.3.1. $f : E \to \mathbb{R} \ (E \subset \mathbb{R})$ a function, $T \in \mathbb{R}^*_+$ *f* is called periodic a period *T* if :

1. $\forall x \in D_f, x + T \in D_f$.

2. $\forall x \in D_f, f(x+T) = f(x)$.

Example:

1. $f : x \mapsto \sin x$, $g : x \mapsto \cos x$. where $T = 2\pi$ the period.

$$f(x+2\pi) = \sin(x+2\pi) = \sin x.$$
$$g(x+2\pi) = \cos(x+2\pi) = \cos x.$$

2. $h: x \mapsto \tan x, T = \pi$ the period because : $\tan(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin x}{-\cos(x)} = \tan x.$

1.4 Bounded Functions :

Let $f : E \to \mathbb{R}$ ($E \subset \mathbb{R}$) a function. We say f is :

- 1. Bounded above if : $\exists M \in \mathbb{R}, \forall x \in E; f(x) \leq M$.
- 2. Bounded below $\exists m \in \mathbb{R}, \forall x \in E; f(x) \ge m$.
- Bounded if : it is bounded above and bounded below.
 We can also write :

$$\exists M \in \mathbb{R}, \forall x \in E; |f(x)| \le M.$$

- 1. $\forall x \in \mathbb{R} : |\sin x| \le 1$ and $|\cos x| \le 1$. So : $x \mapsto \sin x$ et $x \mapsto \cos x$ are bounded functions.
- 2. $f(x) = \frac{1}{x^2 + 1}, \forall x \in \mathbb{R} : x^2 + 1 \ge 1 \Rightarrow 0 < \frac{1}{x^2 + 1} \le 1.$ so *f* is bounded.

1.5 Monotone functions:

 $f: E \to \mathbb{R} \ (E \subset \mathbb{R})$ a function.

f is called monotone increasing (resp decreasing) in E if :

$$\forall x, y \in E : x \le y \Longrightarrow f(x) \le f(y)(\operatorname{resp} f(x) \ge f(y))$$

1.6 Local maximum , local minimum

Let $f : E \to \mathbb{R}$ a function

1. We say f admits a local Maximum in $x_0 \in E$ if $f(x_0)$ is the maximum of the part f(E) so that

$$f(E) = \left\{ f(x) / x \in E = D_f \right\}$$

(*M* is the maximum of *f* on $E \Leftrightarrow f(x) \leq M, \forall x \in E = D_f$.)

- 2. *m* is the minimum of *f* on $E \Leftrightarrow f(x) \ge m, \forall x \in E = D_f$.)
- 3. We say f admits a local maximum in $x_0 \in E = D_f$, if an open interval exists I containing x_0 so that $f(x_0)$ the maximum of $f(E \cap I)$.
- 4. We say *f* admits a local minimum in $x_0 \in E = D_f$, if an open interval exists *I* containing x_0 so that $f(x_0)$ the minimum of $f(E \cap I)$.
- 5. An extremum (local) is a maximum (local) or a minimum (local).

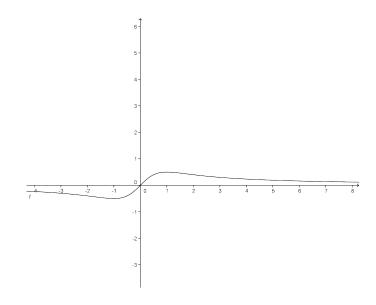
Remark:

A function bounded always accept an upper bound and a lower bound but not necessarily a maximum and a minimum.

1)
$$f : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = \frac{x}{x^2 + 1}$

on the interval I =]-2, 2[open contained in $D_f = \mathbb{R}$ f admits a local minimum $x_0 = f(-1) = \frac{-1}{2}$. and a maximum local $A = f(1) = \frac{1}{2}$.



2) $f(x) = \sqrt{1 - x^2}$, $D_f = [-1, 1]$. *f* admits in 1 and -1 local minimums and a maximum strictly en 0.

1.7 Limit of a function:

Definition 1.7.1. A part $V \subseteq \mathbb{R}$ is a neighborhood of $x_0 \in \mathbb{R}$ if an open interval exists *I* so that $x_0 \in I \subset V$.

Example:

V = [1, 5[is a neighborhood of $x_0 = 2$ Because : for example $2 \in]1, 5[\subset V.$ **Definition 1.7.2.** Let be *V* a neighborhood of $x_0 \in \mathbb{R}$ and $f : V \to \mathbb{R}$ it's a function. We say *f* has a limit $l(l \in \mathbb{R})$ in x_0 if:

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in V : 0 < |x - x_0| < \eta \Longrightarrow |f(x) - l| < \varepsilon$$

and , we write : $\lim_{x \to x_0} f(x) = l$

Example:

1. $f(x) = 5x - 4, x_0 = 1$ $\lim_{x \to 1} f(x) = 1.$ Indeed, let $\varepsilon > 0$, we're looking for $\eta > 0$.

$$|f(x) - 1| < \varepsilon \Leftrightarrow |5x - 5| < \varepsilon$$
$$\Leftrightarrow 5|x - 1| < \varepsilon$$
$$\Leftrightarrow |x - 1| < \frac{\varepsilon}{5}$$

Just take
$$\eta = \frac{\varepsilon}{5}$$

2. $f(x) = \frac{\sin x}{x}$, $x_0 = 0$.
 $\lim_{x \to 0} f(x) = 1$. Note that $f(0) \not\equiv$
3.
 $f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0.\\ 2 & \text{si } x = 0. \end{cases}$ $D_f = \mathbb{R}$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Remark:

If $\lim_{x \to x_0} f(x)$ exists, so $f(x_0)$ can exist or not, even if : $f(x_0)$ exists, it may be different from $\lim_{x \to x_0} f(x)$.

1.8 Left and Right-Hand Limits :

Definition 1.8.1. We say *f* has a limit on the right (resp a left) at the point x_0 if : $\forall \varepsilon > 0, \exists \eta > 0, \forall x, x_0 < x < x_0 + \eta \Rightarrow |f(x) - l| < \varepsilon (resp \quad x_0 - \eta < x < x_0) \Rightarrow$ $|f(x) - l| < \varepsilon$. And, we write : $\lim_{x \to x_0} f(x) (resp \quad \lim_{x \to x_0} f(x))$

Example:

1.
$$f(x) = E(x)$$
, $x_0 = 2$

$$\lim_{x \to 2} f(x) = 2, \quad \lim_{x \to 2} f(x) = 1.$$

So : $\lim_{x\to 2} f(x)$ does not exist. Note that f(2) = E(2) = 2.

2. $f(x) = \frac{|x|}{x}, \quad x_0 = 0.$ $\lim_{x \to 0} f(x) = 1, \quad \lim_{x \to 0} f(x) = -1.$ f(0) does not exist.

Infinite limit:

- $(*) \lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists \eta, \forall x, 0 < |x x_0| < \eta \Longrightarrow f(x) > A.$
- (*) $\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists \eta, \forall x, 0 < |x x_0| < \eta \Rightarrow f(x) < -A.$ if: $x_0 = +\infty$ or $x_0 = -\infty$, we will pose :
- (*) $\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0 \text{ such that } x > B \Rightarrow f(x) > A.$
- (*) $\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0 \text{ such that } x < -B \Rightarrow f(x) > A.$

- (*) $\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists B > 0$ such that $x > B \Rightarrow f(x) < -A$.
- (*) $\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists B > 0 \text{ such that } x < -B \Rightarrow f(x) < -A.$

1.9 Limits theorem

Relationship between the limits of functions and limits of sequences.

Theorem 1: Let $f : [a, b] \to \mathbb{R}$ a function the following two properties are equivalent (i) $\lim_{x \to x_0} f(x) = l$ (ii) Whatever a sequence $(x_n), x_n \in [a, b]$, such that $x_n \neq x_0$ and $\lim_{x \to +\infty} x_n = x_0$. we have: $f(x_n) = l.(l$ complete or infinite)

Proof. i)
$$\Rightarrow$$
 ii)
we have:

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists \eta > 0, \forall x \in [a, b], 0 < |x - x_0| < \eta \Rightarrow |f(x) - l| < \varepsilon.$$
and $\lim_{x \to +\infty} x_n = x_0 \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N \Rightarrow |x_n - x_0| < \varepsilon.$
We take $\varepsilon = \eta$, we find:
 $\forall n \ge N \Rightarrow |x_n - x_0| < \eta \quad (\varepsilon = \eta) \Rightarrow 0 < |x_n - x_0| < \eta \quad (\operatorname{car} \quad x_n \neq x_0)$
so: $|f(x_n) - l| < \varepsilon.$
Which shows that $\lim_{n \to +\infty} f(x_n) = l$
ii) \Rightarrow i) Exercise.

Example:

 $f(x) = \sin(\frac{1}{x}), \qquad \lim_{x \to 0} f(x) = ?$

$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}, \quad \lim_{n \to +\infty} x_n = 0.$$

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin\left(\frac{1}{\frac{1}{\frac{\pi}{2} + 2n\pi}}\right) = \lim_{n \to +\infty} \sin\left(\frac{\pi}{2} + 2n\pi\right) = 1.$$
$$y_n = \frac{1}{n\pi}, \lim_{n \to +\infty} f(y_n) = \lim_{n \to +\infty} \sin(n\pi) = 0.$$

We deduce that $\limsup_{x\to 0} \sin \frac{1}{x}$ doesn't exist.

If: $f \le g \le h$ and if $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l$. so

$$\lim_{x \to x_0} g(x) = l$$

1.10 Operations on limits:

Let f and g two real functions such that:

$$\lim_{x \to x_0} f(x) = l_1, \lim_{x \to x_0} g(x) = l_2, \text{ and } \lambda \in \mathbb{R},$$

then:

1.
$$\lim_{x \to x_0} \lambda f(x) = \lambda l_1$$
.
2. $\lim_{x \to x_0} (f + g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = l_1 + l_2$.
3. $\lim_{x \to x_0} (f \times g)(x) = \lim_{x \to x_0} f(x) \times \lim_{x \to x_0} g(x) = l_1 \times l_2$.
4. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{l_1}{l_2}, \quad l_2 \neq 0$

5. $\lim_{x \to x_0} |f(x)| = |l|$

6. Let be x₀, y₀ and *l* real, *f* and *g* two functions then :

$$\begin{cases} \lim_{x \to x_0} f(x) = y_0 \\ \lim_{x \to y_0} g(x) = l. \quad \text{so} \quad \lim_{x \to x_0} g \circ f(x) = l \end{cases}$$

Proposition 1.10.1. 1. If: $f \le g$ and $\lim_{x \to x_0} f(x) = l_1$ and $\lim_{x \to x_0} g(x) = l_2$ so $l_1 < l_2$

2. If:
$$f \le g$$
, $\lim_{x \to x_0} f(x) = +\infty$ so $\lim_{x \to x_0} g(x) = +\infty$

theorem 1

If f admits a limit l then f is bounded

Proof. $|f(x) - l| < \varepsilon \implies -\varepsilon < f(x) - l < \varepsilon$ so: $l - \varepsilon < f(x) < l + \varepsilon$ so *f* is bounded.

theorem 2

If *f* is bounded and $\lim_{x \to x_0} g(x) = 0$ then : $\lim_{x \to x_0} f(x) \times g(x) = 0$

Relationship between sequence and function:

If *f* admits a limit *l* at $x_0(\lim_{x \to x_0} f(x) = l)$. So for all sequence (x_n) which converges to x_0 We have $:\lim_{n \to +\infty} f(x_n) = l$.

1.11 Continuous functions

1.11.1 Continuity at a point:

Let a function $f : I \to \mathbb{R}$ (*I* being the interval of \mathbb{R}), We say f continue at $x_0 \in I$ if and only if:

11

$$\lim_{x \to x_0} f(x) = f(x_0) \quad \text{i.e:}$$

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I : [0 < |x - x_0| < \eta \implies |f(x) - f(x_0)| < \varepsilon]$$

1.11.2 Right-continuous and left-continuous:

(*) We say f is continuous to the right of x_0 if and only if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

(*) We say f is continuous to the left of x_0 if and only if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Remark: f continue in $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0) = \lim_{x \to x_0} f(x) = f(x_0)$ **Example:**

1.
$$f(x) = |x|$$
, $x_0 = 0$

$$f(x) = \begin{cases} x & x \ge 0\\ -x & x < 0 \end{cases}$$

 $\lim_{x \to 0} f(x) = 0 = f(0) = \lim_{x \to 0} f(x) =$ so *f* is continuous at *x*₀.

2. f(x) = E(x), $x_0 = n$ $(n \in \mathbb{R})$ we have: E(n) = n, $\lim_{x \to n} f(x) = n$, $\lim_{x \to n} f(x) = n - 1$.

$$\lim_{x \to n} f(x) \neq \lim_{x \to n} f(x)$$

so *f* is discontinuous at $x_0 = n$ $(n \in \mathbb{R})$

* We can also express the continuity using the relationship between the limit of a function and convergent sequences (see the previous lesson)

(*f* continue in $x_0 \in I \Leftrightarrow$ whatever sequences $(x_n) \in I$)

If $\lim_{n \to +\infty} x_n = x_0$ so $\lim_{n \to +\infty} f(x_n) = f(x_0)$

1.12 Operations on continuous functions:

Theoreme 1:

If $f,g: I \to \mathbb{R}$ are continuous functions at $x_0 \in I$ so : (*) $\alpha.f(\alpha \in \mathbb{R}), f + g, f \times g$ and $\frac{f}{g}$ $(g(x_0) \neq 0)$ are continuous at x_0 . (*) Si *f* is continuous at x_0 and *g* continue in $f(x_0)$ so : $g \circ f$ is continuous at $x_0 \left(\lim_{x \to x_0} (g \circ f)(x) = g \circ f(x_0)\right)$. Continuity of the composite function

Theoreme 2:

Let $f : I \to I$ and $g : I \to \mathbb{R}$ two functions

If *f* is continuous at x_0 and *g* continue in y_0 with $y_0 = f(x_0)$.

so: $g \circ f$ is continuous at x_0

Proof. g continue in $y_0 = f(x_0) \Leftrightarrow$ $\forall \varepsilon > 0, \exists \eta > 0, \forall y \in I : 0 < |y - y_0| < \eta \Rightarrow |g(y) - g(y_0)| < \varepsilon$ As *f* is continuous at x_0 :

$$\begin{aligned} \exists \eta > 0, \forall x \in I : \left[0 < |x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \varepsilon < \eta \right] \\ \Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon. \\ \Rightarrow |g \circ f(x) - g \circ f(x_0)| < \varepsilon. \end{aligned}$$

Which proves that $(g \circ f)$ is continuous at x_0

1.13 Extension by continuity

Definition : Let f a function defined and continuous on $I/x_0 (I - x_0)$ Suppose that $\lim_{x \to x_0} f(x)$ exists. So : a function \tilde{f} defined on I $\widetilde{f}(x) = \begin{cases} f(x) & if \quad x \neq x_0. \\ \lim_{x \to x_0} f(x) & if \quad x = x_0. \end{cases}$

and known as the continuity extension of f en x_0 .

Example:

 $f(x) = \frac{\sin x}{x}, \quad D_f = \mathbb{R} - \{0\}$ $\lim_{x \to 0} f(x) = 1 \text{ so } \widetilde{f} \text{ defined by :}$

$$\widetilde{f}(x) = \begin{cases} f(x) & if \quad x \neq 0.\\ \lim_{x \to 0} f(x) & if \quad x = 0. \end{cases}$$
$$\widetilde{f}(x) = \begin{cases} \frac{\sin x}{x} & if \quad x \neq 0.\\ 1 & if \quad x = 0. \end{cases}$$

 \widetilde{f} is continuous on \mathbb{R} .

 \widetilde{f} is the function extended by continuity of f at 0.

1.14 Continuous function on an interval

Definition 1.14.1. The function f defined on interval $I \subseteq \mathbb{R}$ is continuous on I provided f is continuous at every point of I.

Remark:

Polynomial functions and rationals are continuous on their domain of definition.

Example:

$$f(x) = x^2 - 2x + 1 \text{ continues on } \mathbb{R}.$$

$$g(x) = \frac{x^3 - 4}{x} \text{ continues on } \mathbb{R} - \{0\}.$$

$$h(x) = \sqrt{x} \text{ continues on } \mathbb{R}^+$$

1.15 Theorem for continuous functions on a closed interval :

Let f a function continuous on the closed interval [a, b], so:

1. *f* is bounded (i.e, $\forall x \in [a, b], |f(x)| \le M$)

2. *f* reaches its upper bound and its lower bound that is:

$$\exists x_1 \in [a, b], f(x_1) = \sup f(x), \quad x \in [a, b].$$

$$\exists x_2 \in [a, b], f(x_2) = \sup f(x), x \in [a, b].$$

Proof. 1) Suppose that f continuous and unbounded on [a, b]So : $\forall n \in \mathbb{N}, \exists x_n \in [a, b], |f(x_n)| > n$. the sequence (x_n) is bounded $\Rightarrow (x_n)$ admits an extracted sequence $(x_{\phi(n)})$ converges.

 \square

 $\lim_{n \to +\infty} x_{\phi(n)} = \overline{x} \in [a, b] \text{ because } a < x_{\phi(n)} < b$ We have : $\lim_{n \to +\infty} |f(x_{\phi(n)})| = |f(\overline{x})| < +\infty \dots (1)$ as *f* is continuous on [a, b] and $x_{\phi(n)} \to \overline{x}$ So : $\lim_{n \to +\infty} |f(x_{\phi(n)})| = |f(\overline{x})| < +\infty.$ Contradiction with (1). So *f* is bounded . 2) sup *f*(*x*) et inf *f*(*x*) exists. a) Suppose that $\forall x \in [a, b], f(x) < \sup f(x) = M$ Let's put : $g(x) = \frac{1}{M - f(x)}, g$ continues on [a, b]. According to *g* is bounded.

$$\Rightarrow \exists c \in \mathbb{R} : |g(x)| < c, \forall x \in [a, b]$$
$$\Rightarrow \frac{1}{M - f(x)} \le c \Rightarrow M - f(x) \ge \frac{1}{c}, \text{ so:} f(x) \le M - \frac{1}{c}.$$
Contradiction with $\sup f = M.$ so : $\exists x_1 \in [a, b] : f(x_1) = \sup(f(x)), x \in [a, b].$

Another way:

Let *f* a function from [a, b] at \mathbb{R} . We say *f* is continuous on [a, b] if:

- 1. *f* is continuous on interval]*a*, *b*[.
- 2. *f* is right-continuous at *a*.
- 3. *f* is left-continuous at *b*.

1.16 Discontinuity of first and second species

(1) f has a discontinuity of the first kind in x_0 if: f is not continuous in x_0 and admits a right-limit and a left-limit at x_0 .

(2) f has a discontinuity of the second kind if: f is not continuous in x_0 and discontinuity is not the first species.

Example:

1)

$$f(x) = \begin{cases} \frac{2\sqrt{x^2}}{x} & \text{if } x \neq 0. \\ 2 & \text{if } x = 0. \end{cases}$$

$$f(x) = \frac{2\sqrt{x^2}}{x}, \quad \text{if } x \in]-\infty, 0[\cup]0, +\infty[, f(0) = 2 \end{cases}$$

$$(*) \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2\sqrt{x^2}}{x} = \lim_{x \to 0} \frac{2|x|}{x} = \lim_{x \to 0} \frac{2x}{x} = 2.$$

$$(*) \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} \frac{2\sqrt{x^2}}{x} = \lim_{x \to 0} \frac{2|x|}{x} = \lim_{x \to 0} \frac{2(-x)}{x} = -2.$$
so:
$$\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x) \text{ so: } f \text{ has a discontinuity of the first kind.}$$

$$2) g(x) = \sin \frac{1}{x}, \quad D_g = \mathbb{R} - \{0\}.$$
g is not continuous in $x_0 = 0.$
So : g has a discontinuity of the second kind.

1.17 The intermediate value theorem

Theoreme 1:

Suppose *f* is a continuous function on the interval [a, b]if: f(a). f(b) < 0. So: $\exists c \in]a, b[: f(c) = 0$.

Theoreme 2:

Let $f : I \to \mathbb{R}$ is a continuous function on *I* any interval of \mathbb{R} . Let a < b. two elements of *I*, takes every value *l* that is between f(a) and f(b)So: $\exists c \in]a, b[: f(c) = l$.

 \square

Proof. Suppose that f(a) < f(b) so f(a) < l < f(b). Let g(x) = f(x) - l*g* is a continuous on [a, b].

$$\begin{cases} g(a) = f(a) - l < 0\\ g(b) = f(b) - l > 0 \end{cases} \implies f(a) - f(b) < 0$$

According to the previous theorem

$$\exists c \in]a, b[: g(c) = 0 \Longrightarrow g(c) = f(c) - l = 0 \Longrightarrow f(c) = l.$$

Example:

 $f(x) = x^5 - 3x + 1.$ Show that $\exists c \in [0, 1[, f(c) = 0$ f is a continuous on [0, 1], and we have $:f(0) \times f(1) = -1 < 0.$ So $:\exists c \in [0, 1[: f(c) = 0]$

1.18 Uniform continuity

Definition:

A function *f* defined on interval *I* is uniformly continuous (U.C) on *I* if:

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x, y \in I : \left[\left| x - y \right| < \eta, \left| f(x) - f(y) \right| < \varepsilon \right]$$

This means:

$$\forall x_n, y_n \in I : |x_n - y_n| \to 0 \Longrightarrow |f(x_n) - f(y_n)| \to 0.$$

$$f(x) = \frac{1}{x}, I = [1, +\infty[$$

Let $\varepsilon > 0$ and $x, y \in [1, +\infty[$.

$$\begin{aligned} \left| f(x) - f(y) \right| &= \left| \frac{1}{x} - \frac{1}{x} \right| = \left| \frac{y - x}{xy} \right|. \\ x \ge 1 \quad \text{et} \quad y \ge 1 \Rightarrow xy \ge 1 \Rightarrow \frac{1}{xy} \le 1. \\ \text{so:} \quad \frac{\left| y - x \right|}{xy} &= \frac{\left| x - y \right|}{xy} < \left| x - y \right|. \\ \text{so:} \quad \left| f(x) - f(y) \right| < \left| x - y \right|. \end{aligned}$$

So just take $\eta = \varepsilon$, $(|x - y| < \eta \Rightarrow |f(x) - f(y)| < \varepsilon)$ So *f* is uniformly continuous (U.C) on $[1, +\infty]$. **Remark:**

- (1) The uniform continuity is a property of f on interval while continuity can be defined at a point.
- (2) If f is U.C on I so f is a continuous on I.
- (3) In general if f is a continuous on I so f is not necessarily U.C on I.

Example:

$$f(x) = \frac{1}{x}, \qquad I =]0, 1].$$

f is continuous on]0,1].

 $P:(f \text{ is U.C}) \Leftrightarrow \forall x_n, y_n \in [0,1], |x_n - y_n| \to 0 \Rightarrow |f(x_n) - f(y_n)| \to 0.$ $\overline{P}:(f \text{ is not U.C}) \Leftrightarrow \exists x_n, y_n \in [0,1], |x_n - y_n| \to 0 \land |f(x_n) - f(y_n)| \to 0.$

$$\overline{A \Rightarrow B} \Leftrightarrow A \land \overline{B}, \quad A \Rightarrow B \Leftrightarrow \overline{A} \lor B.$$

We take: $x_n = \frac{1}{n}$, $y_n = \frac{1}{n+1}$, $n \neq 0$.

$$|x_n - y_n| = \left|\frac{1}{n} - \frac{1}{n+1}\right| = \frac{1}{n(n+1)} \to 0.$$

But $|f(x_n) - f(y_n)| = |n - (n+1)| = 1 \to 0$

So *f* is not U.C on]0,1]

1.19 Lipschitz Function:

Definition:

Let *I* an interval on \mathbb{R} , a function $f : I \to \mathbb{R}$ is called Lipschitz if a constant exists $k \ge 0$ such that :

$$\forall x, y \in I : \left| f(x) - f(y) \right| \le k \left| x - y \right|.$$

According to the previous definition: *f* Lipschitz on $I \Rightarrow f$ is U.C on *I*. Indeed : $|f(x) - f(y)| \le k |x - y| < (k + 1) |x - y|$. So : just take the $\eta = \frac{\varepsilon}{k+1}$.

. . .

Example:

$$f(x) = x^{2}, \qquad I = [0, 1].$$

$$\forall x, y \in [0, 1], |f(x) - f(y)| = |x^{2} - y^{2}| = |(x + y)(x - y)| = |x + y| |x - y| = (x + y) |x - y| \le 2 |x - y|.$$

2

$$\begin{cases} x \le 1 \\ y \le 1 \end{cases} \Rightarrow (x+y) \le 2$$

T [0 1]

So: f is Lipschitz \Rightarrow f is U.C on [0,1].

1.20 Heine's theorem:

A function continuous on a closed interval [a, b] is uniformly continuous on this interval.

Example:

$$f(x) = \frac{1}{x}$$
, f is a continuous on $\left[\frac{1}{2}, 1\right] \Rightarrow f$ is U.C on $\left[\frac{1}{2}, 1\right]$.

1.21 Continuous reciprocal function

Theorem:

If *f* a function continuous and strictly monotone on [a, b] so *f* is a bijection of [a, b] in f([a, b]).

Definition

Let f a bijection, so f admits a reciprocal function f^{-1} continuous and strictly monotone on f([a, b]) and with the same sense of monotony of f.

> f^{-1} : $f([a,b])) \rightarrow [a,b]$ $x \mapsto f^{-1}(x).$

$$f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x) = 4x - 1.$$

$$f^{-1} : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f^{-1}(x).$$
We have $f(x) = y = 4x - 1 \Rightarrow x = \frac{y+1}{4}$, so $x = \frac{y}{4} + \frac{1}{4} = f^{-1}(y)$.
so : $f^{-1}(x) = \frac{1}{4}x + \frac{1}{4}$.

1.22 Order of a variable-equivalence (Landau's notation):

1.22.1 Negligible functions:

Definition:

Let f, g two functions defined on the same interval I in a neighborhood of the point x_0 (left and right of $x_0 \in \overline{\mathbb{R}}$ with $\overline{\mathbb{R}} = [-\infty, +\infty]$). We say f is negligible compared to g in the neighbourhood of x_0 if a function exists ε defined on I with $f = \varepsilon \times g$ et $\lim_{x \to x_0} \varepsilon(x) = 0$. It is symbolized by : $f(x) = O_{x_0}g(x)$. We call f = O(g) Landau notation.

Remark:

If the function g does not cancel out in the neighbourhood of x_0 . So : $f = O(g) \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$

Example:

1)

$$x = O_{+\infty}x^{2}, \exists \varepsilon \text{ whith } \varepsilon(x) = \frac{1}{x}.$$
$$x = \frac{1}{x}x^{2}, \quad \varepsilon = \frac{f}{g}, \quad \text{such that } \lim_{x \to +\infty} \varepsilon(x) = 0.$$
$$x = O_{+\infty}(x^{2}) \Leftrightarrow \lim_{x \to +\infty} \frac{x}{x^{2}} = 0$$

2) $x + 1 = O_{+\infty}(x)^2$.

$$\begin{split} &x=O_{+\infty}(e^x).\\ &x^{\alpha}=O_{+\infty}e^{\beta x}(\alpha,\beta>0). \end{split}$$

1.23 Equivalent functions

We say f is equivalent to g in the neighbourhood of x_0 if and only if (f - g) is negligible compared to g. We write:

$$f \sim_{x_0} g \Leftrightarrow f - g = O_{x_0} g$$

$$\sin x \sim x, f - g = O_{x_0} f \begin{cases} f - g = \varepsilon_1 g. \\ f - g = \varepsilon_2 g. \end{cases} \quad g \neq 0, \lim_{x \to x_0} \frac{f - g}{g} = 0.$$

$$f \neq 0, \lim_{x \to x_0} \frac{f}{g} - \lim_{x \to x_0} \frac{g}{g}$$

such that $f \neq 0$ and $g \neq 0$ on $V - \{x_0\}.$
So: $f \sim g \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$

$$\sin x \sim x.$$

$$\cos x \sim 1 - \frac{x^2}{2}.$$

$$\ln(1+x) \sim x.$$

$$e^x - 1 \sim x.$$