
Chapter 2:
The simple sequential algorithm

Algorithms and data structure

Presented by: Dr. Benazi Makhlouf
Academic year : 2023/2024

Chapter contents :
1. Introduction
2. Concept of language

• Language
• Comments
• Reserved words
• Identifiers

3. Structure of an algorithm
4. Data:

• Values
• Data types
• Constants
• Variables

5. Statements (Instructions)
• Basic operations
• Expression
• Instruction and Block of

instructions
6. Assignment statement
7. Input statement: read()
8. Output statement: write()
9. A simple algorithm
10. Flowchart
11. Translation to C language

• Preprocessor
• Types
• Variable declaration
• Constant declaration
• Assignment
• Input: printf
• Output: scanf
• Structure of a C program

1. Introduction

When the computer was invented, it operated using vacuum tubes, and programming

was done by entering zeros (0) and ones (1). With the invention of the transistor and

integrated circuits, computers became smaller in size and their capabilities increased.

High-level programming languages were created to make programming tasks easier.

There are three main ways to represent an algorithm:

1. Pseudocode: This involves describing the algorithm using languages that are

close to natural language.

2. Flowchart: This involves representing the algorithm using arrows and

geometric shapes to describe the steps and decisions.

3. Programming languages: This involves writing the algorithm directly in a

specific programming language.

2. Concept of language
Language

It is the way in which a computer understands human commands. It consists of

characters, vocabulary, grammatical rules, and meanings.

Programming language:

It is an intermediate language between human language and machine language. It

provides us with a framework to develop programs that a computer can execute.

It allows us to describe data structures and the operations to be performed.

Types of programming languages:

• Interpreted: If the program is read and executed instruction by instruction by an

interpreter. Examples include Matlab and web languages.

• Compiled: If the program is fully translated into machine language by a compiler

before execution. An example is the C language.

Integrated Development Environment
(IDE) 1/2

It is a set of programs that provide all the necessary tools for the application

development process, which includes designing, developing, testing,

debugging, and deploying applications.

• Code Editor: It is a tool used to write and edit source code. It provides

features such as syntax highlighting, code completion, and code formatting to

facilitate the development process.

• Project Manager: It is a tool that helps organize and manage the files and

resources related to a software project. It allows developers to structure their

code, manage dependencies, and build the project.

Integrated Development Environment
(IDE) 2/2

• Debugger: It is a tool used to identify and fix errors, or bugs, in a program.

It allows developers to track the execution of their code, set breakpoints, and

inspect variables to find and resolve issues.

• Shortcuts for compiling and running the program: These are keyboard

shortcuts or menu options provided

by the IDE to quickly compile and

execute the program without manually

navigating through multiple steps.

example : Dev-C++, Embarcadero,

visual studio...

Comments

These are texts that are ignored during compilation and are not part of the program.

There are two types:

• Single-line comments: They start with // (double slashes) and end at the end of the

line.

• Multi-line comments: They start with /* (slash asterisk) and end with / (asterisk

slash).

Example:

// Single-line comment

/* Multi-line

comment */

reserved words

These are words that have a predefined meaning in the programming

language and cannot be used to identify new elements.

Example:

In algorithmic language, "algorithm", "begin", "end", "and", "if".

In C language, "if" and "while".

Identifier
It is the name given by the programmer to any element of the algorithm that they

want to create. Examples include algorithm name, variable, type, constant, function,

etc.

Rules for identifiers:
1. Can consist of A-Z, a-z, 0-9, or _
2. Must be a single word (no spaces)
3. Should not contain special characters like ;:!/.?§…
4. Must not start with a digit
5. Must not be a reserved word
6. Must be unique, meaning no two elements can have the same name

Note: It is recommended to use meaningful names.
Examples:

Valid identifiers: x, pi, Mat_info, isEmpty, n5, _begin, _0a
Invalid identifiers: α, ,ج π, élève, 3a, Mat info, begin (algo), if (C)

3. The structure of an algorithm
An algorithm consists of data and instructions, and

it is very similar to a cooking recipe. It consists of

a header, declarations, and instructions, and it

takes the following form:

Algorithm name
Declaration

Begin
Instructions

End

• Header: Composed of the word "Algorithm" followed by the name that

explains the problem to be solved. It must be a valid identifier.

• Declarations: Reserved memory space for data (constants and variables).

• Instructions: A set of commands that will be executed to solve the

problem. It starts with "Begin" and ends with "End".

Data:

• Values

• Constants

• Variables

• Data types

Values
• Numbers like: 2, -7, 3.12, 6.2e-7

• Characters always enclosed in single quotation marks, such as:‘k’, ‘1’, ‘?’, ‘

‘, ‘\n’ , ’خ‘

• Strings always enclosed in double quotation marks, such as: "azety",

" علیكمالسلام " , "k" , "1" , ""

• true, false

Data types
Type: It refers to the domain to which the data belongs, such as numbers, text, images,

audio, or video.

The type determines how the bits are translated and the memory size to reserve, i.e., the

number of bits, and the allowed operations.

There are 5 basic types in algorithms:

1. Integer: -5, 0, 1, 13

2. Real: -7, 0, 1., 3.14, 2.7e03

3. Boolean: It only contains two values: true or false.

4. Character: It includes all the icons on the keyboard: digits, letters in all languages, and

printed (visual) and non-printed symbols: 'a', 'M', '1', '+', ',', .'س'

5. String: A collection of characters, with a length of 0 or more, always enclosed in double

quotation marks: "computer science", "Good luck\n", "1", "3.14".

constant
A value (numeric or symbolic) that has a name and cannot be changed during
program execution.
Declaration:

Const Identifier = value

• Const or Constant: These are two reserved words.
• Identifier: It is the name given to the constant.

Example:
Const

Pi = 3.1415926

DEP = " الاليالاعلامقسم ”

Advantages of constants:
• Compact code: Replace a long phrase with a short word. Use "Pi" instead of 3.1415926.
• Avoid errors: Use a meaningful name. For example, use "PI" instead of 3.1415926.
• Simplify maintenance: The value needs to be modified in only one place.

Variables
A memory location used to store data. It has a name, a type, and a value.

• Name: An identifier used by the programmer to manipulate the variable. For
example, weight.

• Type: The data type of the variable. For example, integer, real, character, string.
• Value: The data stored in the variable, which can change during program

execution. For example, 5, 'v', "azrty".
Variable Declaration:

Var Identifier : Type

• Var or Variable: These are two reserved words used for declaring variables.
• Identifier: The name given to the variable.
• Type: The data type of the variable.

Examples:
Var

age : integer

x, y, z: real

5. Instructions

• Basic Operations:

• Expression

• Statement or Instruction and Block of Instructions:

• Assignment Instruction:

• Input Instruction: read()

• Output Instruction: write()

Basic operations
Arithmetic operations

Op C comment example

+- +- sign +3 -7 -a
+- +- The two operands are integers, the result is an integer. one is

real, result is a real number.
5+3.0

* * For the multiplication, like addition and subtraction. 5*3 integer
/ / for real division. The result is always a real number 5/3 ou 5.0/3 in C
mod % To calculate the remainder of the division. Both operands are

integers The result is always an integer.
5 mod 3 ou
5%3 in C

div / To calculate the quotient (integer division). Like the
remainder

5 div 3 or 5/3 in C

^ To calculate the power, in C we use the pow() function, the
result is a real number

5^2 or pow(5,2) in
C

√ To calculate the root, in C we use the sqrt() function, the
result is a real number

√5 or sqrt(5) in C

Basic operations
Relational operators comparison

Operation C comment
>, >=, <, <= the same in C
= == In C, "==" twice = is read as equal, while "=" is used for

assignment and read as receive.

≠ != The "!=" operator is read as "not equal to"

Observation:
The result of a comparison operation is always of type boolean, which
means it can only have two possible values: true or false.

Basic operations
Logical operators

Opérat
ion

C comment

not negation ! true if the operand is false. and false if true.

and && true if both operands are true, otherwise false

or || False if both operands are false, otherwise true

xor or
exclusive

true if one is true and the other is false, otherwise
false

= equivale
nce

== true if are equal.

Basic operations
String operators

+ is used to concatenate two character strings.

For example: "good" + " + " luck gives "goodluck”

priority the operation

0 ()
1 + and - signs, not.

2 * / mod div

3 +-
4 >, >=, <, <=

5 ≠ , =

6 and

7 or

if priority is equal, priority is given to
the left-hand operation

priority

Expression
An expression is a combination of variables, constants, operators, and functions that evaluates

to a single value.

For example: Assume a=2, b=3 and ok=true

expression result expression result expression result

5 5 a+3 5 ok vrai

a 2 "In"+"fo" Info a*(b-7)>8 and ok faux

Instruction
An instruction is a single command or action that is executed by the computer. It can be a
basic operation, a control structure, or a function call.

block of instructions also known as a code block or compound statement

• a set of instructions that begins with the word begin and ends with End, or begins with a
reserved word that defines the start as if and ends with the word end + the start word as end
if. It allows for the execution of multiple instructions as a single unit.

• In C, a block of instructions,, is enclosed between curly braces {}.

example :

algorithm C
Begin

Instruction 1

…

Instruction n

End

{

Instruction 1 ;

…

Instruction n ;

}

Assignment
is the process by which we store a value in a variable.

Syntax :

variable ← expression

• ← is read as "assigns" or "gets“ or receives. The arrow always points towards the variable

• the value of the expression and the variable must be of the same type, or of compatible

types.

• Before a variable can be used, it must be declared and initialized.

• To obtain the value of a variable or constant, you simply need to write its name.

Example a←5 a receives 5
b←a*2 b receives 10
a←0 a receives 0
b←b-1 b receives 9
c←’b’ c receives the letter b
d←b>a d receives true
s←"name" s receives the word name

a b
5 ?
5 10
0 10
0 9

Input/Output statements
To interact with the user, the developer has two instructions:

• read()

• write()

Input : Read()
is used to retrieve a value entered by the user, typically from the keyboard, and
assign it to the variable within the parentheses. It is commonly used for inputting
data.

Syntax :

Read(variable)

• read() can only be used with variables.

• When the "Read()" instruction is encountered, the execution pauses until the user
enters the data. The input process is completed by pressing the Enter key.

• Several variables can be entered at once, separated by a comma ",".

• Always before the ‘Read()' instruction, the ‘Write()' instruction is used to explain
to the user what is being asked to enter.

Example

Read(name) Read(a, b)

Output : Write()
It displays on the screen everything we put inside its brackets. It is always used to
print results.
Syntax :

Write(expression)
or

Write("message")
• expression, calculated to obtain a single value, which will be displayed on the

screen.
• "message": is any text to be displayed as is on the screen. It is not calculated. It's

in any language. It must be enclosed in double quotation marks, which are not
displayed.

• Several values and texts can be displayed at once, separated by ",".
Example :

a←5
Write(a+3) Write("a+3")
Write(" square of ", a, " is ", a*a) Write("b=",a)

6. Building a simple algorithm
• The header: Algorithm + name

• The declaration: variables and constants

• Instructions: The instruction part generally consists of three basic steps:

1. The first step, "Inputs": the data needed for the execution is entered

using the "Read()" instruction.

2. The second step, "Processing": It contains a set of instructions

required to solve the problem, using the assignment instruction.

3. The third step, "Outputs": the results are presented using the "Write()"

instruction.

Example 1:

Write an algorithm to calculate the area of a circle.

Algorithm area_cercle
Const

P=3.14
Var

r, a: integer //r is the radius and a is the area
Begin

Write(" Enter radius ")
Read(r)
a←p*r*r
Write("The area of the circle is:" , a)

End

Example 2:
Write an algorithm that calculates the average for ADS1.

Algorithm avg_ADS1

Var

exm, td, tp, avg : real

Début

Write("Enter the exam grade, the tutorial grade, and

the practical work grade.")

Read(exm, td, tp)

avg ←(exm*3+td+tp)/5

Write("La moyenne est:" , avg)

Fin

Running an algorithm
It aims to find out the value of each variable after each instruction.

After each assignment or reading, the value of the variable changes.
Example

Algorithm mirror Execution
Var

a, b, c:integer a b c
Begin

a←357 357 ? ?
c←0 357 ? 0
b←a mod 10 357 7 0
c←c*10+b 357 7 7
a←a div 10 35 7 7
b←a mod 10 35 5 7
c←c*10+b 35 5 75
a←a div 10 3 5 75
b←a mod 10 3 3 75
c←c*10+b 3 3 753

End

7. Flowchart
An algorigram, also known as a flowchart, is a visual representation of an algorithm using different

shapes and arrows to illustrate the sequence of operations. It provides a clear and structured view of

the algorithm's logical flow, making it easier to understand and analyze.

yes

no

Begin, end, interruption

Input - Output

Treatment as assignment

Choice with condition

Example :
the algorithm that calculates the area of a circle

Begin

Read(r)

a←p*r*r

Write(a)

End

8. Translation into C language
• "C" is a high-level imperative language that is fully compiled. It is one of

the most widely used programming languages in the world and is

considered the parent language of many other programming languages.

• "C" is case-sensitive, meaning it distinguishes between uppercase and

lowercase letters. For example, <main> is not the same as <Main>,

<MAIN>, or <mAin>. Therefore, it is recommended to always write in

lowercase.

• All simple statements (declarations, assignments, input/output, and return

statements) in "C" must end with a semicolon ";".

The preprocessor
Before compiling the source code, the file is processed by a special software known
as the preprocessor, which allows the inclusion of other files (libraries) and
replacement of words with other phrases (macros).
Preprocessor directives always start with #.

#include: Used to include the content of a file in the current program code.
#define macro_name replacement_text Used to define a macro with a

specific name and replacement text.
Example:

• To use I/O functions (scanf and printf), we include the stdio.h library.
• To use mathematical functions (sin, cos, exp, pow, sqrt, ...), we use the math.h

library.
#include <stdio.h>

#define N 10

The preprocessor replaces all occurrences of the word N with 10.

The types

Types Size in bytes Size in bits interval
char 1 8 -27 ,27-1
short 2 16 -215 ,215-1
long 4 32 -231 ,231-1
int 4 32 -231 ,231-1

• Integers in the algorithm from -∞ to +∞

In algorithms, natural numbers range from 0 to +∞, and we commonly use
integers to represent them. In C, we can use the <unsigned> keyword before a
data type to express natural numbers without negative values.

Types Size in bytes Size in bits interval
unsigned char 1 8 0 ,28-1
unsigned short 2 16 0 ,216-1
unsigned long 4 32 0 ,232-1
unsigned int 4 32 0 ,232-1

The types
Real numbers

Types Size in bytes precision
float 4 6

double 8 8
long double 10 8

• In C, there is no built-in Boolean type, but instead, we use int to represent
Boolean values. In this representation, true is represented by the value 1, and
false is represented by the value 0. Any number other than 0 is considered as
true.

• The type used for characters in C is char.

• To represent strings in C, we use arrays of char (Chapter 5) char[], or
pointers (second semester) char*.

• The char type is used for both integers and characters, where each character
is associated with a numeric value.

• In this course, we use char for characters, int for integers and Booleans, and
float for real numbers.

Declaration of variables and constants

Variables
Syntax :

Type variable;
example :
int age;
char grade;
float x, y, z;
Banane b;

Constants
Syntax :

const Type Identificateur=valeur;
ou

Type const Identificateur=valeur;
example :
int const N = 10;
const float Pl = 3.1415926;
Note: Macros can be used to declare constants.
#define DEP "Département
informatique"

The assignment
We use = instead of and read it as receives and not equals.

variable = expression;
Example :

a=5;

b=a*2;

a=0;

d=b>a;
Declaration with initialization

float x, y=3, z;//y is initialized with 3
If the assignment appears more than once, priority is given to the right. Such as:

b=3 ;
a=b=5+3 ;

Assignment shortcuts in C.
expression comment example
v+=exp ; ⇔ v=v+(exp) ;

parentheses are important

x=2 ;
x*=5+3 ; ⇔ x=x*(5+3) ;

≠ x=x*5+3 ;
x becomes 16

v-=exp ; ⇔ v=v-(exp) ;
v*=exp ; ⇔ v=v*(exp) ;
v/=exp ; ⇔ v=v/(exp) ;
v%=exp ; ⇔ v=v%(exp) ;

v++ ; ⇒ v=v+1 ;
When you use the post-increment or post-
decrement operators, the current value of
the variable is used in the expression, and
then the value of the variable is
incremented or decremented by 1 after
the operation is completed.

x=2 ;
y=3+x++ ;⇔
y=3+x ;x=x+1 ;
In other words, y becomes 5
and x 3

v-- ; ⇒ v=v-1 ;

++v; ⇒ v=v+1 ;
When you use the pre-increment or pre-
decrement operators, the value of the
variable is incremented or decremented
by 1 before the expression is evaluated,
and then the updated value is used in the
expression.

x=2 ;
y=3+ ++x ;⇔ x=x+1 ;
y=3+x ;
In other words, y becomes 6
and x 3

--v ; ⇒ v=v-1 ;

printf (print formatted)
The printf function, defined in the stdio.h library, is used to write formatted data to

the screen.
Syntax :

printf (format, expression_1,… , expression_n);
• expression: calculated to be displayed in <format> format.
• Format: is a text or string of characters that is displayed exactly as it is on the screen.

However, it may contain special symbols like "%" to express the format of expressions and
the “\" character as an escape symbol.

The format takes the following form:

%type_char

Where type_char can be:

%d decimal (10) %o octal (8) %x hexadecimal (16)

%u natural unsigned %i int %f float

%c char %s string %e scientific format

Escape sequence
"Escape technique" or "Escape sequence" is a method used in programming and text

processing to represent certain characters that have special meanings, such as the

newline character "\n" or the tab character "\t", which cannot be directly represented

in a string.

In C, the escape character is the backslash \, and we use it to add a new line '\n' or a

tab (a large space) '\t'. and to display " we use ‘\“’, to print \ we use ’\\’ and to print

% we use %%.

example :
printf("Hello");
Display Hello
int a=13;
printf("a=(%d)10\ta=(%o)8\ta=(%x)16\n",a ,a ,a);
a=(13)10 a=(15)8 a=(D)16
a=66;
printf("a=%i\ta=%f\ta=%c\ta=%c\n",a ,a ,a ,a+32);
a=66 a=0.000000 a=B a=b

Because 66 is not necessarily 66 in float

And 66, if we think of it as a character, represents the letter B, while 66 + 32 = 98
represents the coding of the letter b in lower case.
float pi=3.1415926;
printf("%f\t%.4f\t%06.2f" ,pi ,pi ,pi);
3.141593 3.1416 003.14

scanf (scan formatted)
The scanf function, defined in the stdio.h library, is used to read formatted data from

the keyboard.
Syntax :

scanf(format, &variable_1, … , &variable_n);
• variable: Represents the variable name. It is preceded by <&>, unless it is a string

variable (pointer type).
• format: String representing the reading format.

The format takes the following form:
%type_char (same as in printf)

Example :

scanf("%s", name);

scanf("%d%f",&a, &b);

scanf problem with characters
When reading a character using scanf("%c"...), the user enters the first character, then presses

the Enter key, which in turn produces the character '\n', which is not deleted from memory,

and when the program encounters the scanf("%c", ...) instruction for the second time, it

doesn't wait for what the user will enter, but instead assigns the character \n to the second

variable.

To avoid this problem, in the second scanf we use a space ' ' after % like this: scanf("% c"...).

Or we use the getch() function

Example :

scanf("%c", &c1) ;

scanf("% c", &c2) ;

scanf problem with strings.
The problem arises when we try to enter a string containing spaces in a variable.
for example:

scanf("%s%s", v1,v2) ;

It puts the first word in v1 and the second in v2

scanf("%s", v1) ;

When we enter the words math info and press Enter, the program assigns the
first word to v1 and the second word will be lost.

To avoid this problem, we use the gets function defined in the string.h library.

#include <sting.h>

gets(v1);

Structure of a C program

1.
2.
3.
4.
5.
6.
7.
8.

#include <stdio.h>
Declaration of constants, types and variables

int main()
{

Declaration of constants and variables
Instructions
return 0;

}

An example of how to translate an
algorithm into C

algorithm C
Algorithm area_cercle
Const P=3.14 Const float P=3.14;
Var r, a:integer int r, a;
//r radius and a area //r radius and a area
Begin int main()

{
Write("Enter radius") printf("Enter radius\n");
Read(r) scanf("%d", &r);
a←p*r*r a=p*r*r;
Write("The area of the
circle is:" , a)

printf("The area of the
circle is: %d" , a);

End }

example
Write a program to calculate the average for ADS1.
#include <stdio.h>
int main() {

float exm, td, tp, avg ;
printf(" Enter exam grade \n") ;
scanf("%f", &exm) ;
printf(" Enter TD grade \n") ;
scanf("%f", &td) ;
printf(" Enter TP grade \n") ;
scanf("%f", &tp) ;
avg = (exm * 3 + td + tp) / 5 ;
printf(" The average is %.2f" , avg) ;
return 0;

}

End Chapter 02

	Chapter 2:�The simple sequential algorithm
	Chapter contents :
	1. Introduction
	2. Concept of language
	Integrated Development Environment (IDE) 1/2
	Integrated Development Environment (IDE) 2/2
	Comments
	reserved words
	Identifier
	3. The structure of an algorithm
	Data:
	Values
	Data types
	constant
	Variables
	5. Instructions
	Basic operations
	Basic operations
	Basic operations
	Basic operations
	Expression
	Instruction
	Assignment
	Input/Output statements
	Input : Read()
	Output : Write()
	6. Building a simple algorithm
	Example 1:
	Example 2:
	Running an algorithm
	7. Flowchart
	Example :
	8. Translation into C language
	The preprocessor
	The types
	The types
	Declaration of variables and constants
	The assignment
	Assignment shortcuts in C.
	printf (print formatted)
	Escape sequence
	example :
	scanf (scan formatted)
	scanf problem with characters
	scanf problem with strings.
	Structure of a C program
	An example of how to translate an algorithm into C
	example
	Slide Number 49

