
Chapter 4:
Loops

Algorithms and data structure 1

Presented by: Dr. Benazi Makhlouf
Academic year : 2023/2024

Contents of chapter 04:

1. Introduction

2. The loop «while»

3. The loop « do… while»

4. The loop « for »

5. Nested loops

6. Loop equivalence

7. Loop termination commands

1. Introduction

• a loop is a control structure that aims to execute a set of instructions

repeatedly.

• There are three types of loops:

1. Conditional loop with a pre-condition "While" : The condition is checked

before the first iteration..

2. Conditional loop with a post-condition "Do...While" : The condition is checked

after the first iteration.

3. Iterative loop “for”: A counter is used to determine the number of iterations.

• Infinite loop: A loop that never stops.

2. «while» loop

The "while" loop is a pre-condition loop in which a set of instructions is executed

repeatedly based on a Boolean condition. The "while" loop can be seen as a repetition

of the "if" statement. It is used when we have a set of instructions that repeat with the

possibility that they may not be executed at all (0 times or more).

It consists of two parts:

• Condition: This is an expression of boolean type, which has a value of either true or

false.

• Block of instructions: It is executed as long as the condition is true.

syntax

Algorithm C

while Condition do

Block of instructions

end while

The rest of the program

while (Condition)

{

Block of instructions

}

The rest of the program

in the algorithm, the condition is always between the words while and do,

whereas in C it's always between parentheses ().

Bloc inst

yes

cond
?

Reste inst

no

Algorigram

Example
Write a program that reads two integers and then displays the quotient of the first number divided by the

second, without using the division operator (/).

Algorithm C screen

algorithm quotient

var x, y, q, r :integer

/*x first nbr, y second, q

quotient, r remainder*/

begin

write ("enter 2 nbrs")

read(x, y)

q0

rx

while r>=y do

rr-y

qq+1

end while

write ("The quotient of",

x, "over", y, "is", q, "the

remainder is", r)

end

#include <stdio.h>

int main()

{

int x, y, q, r ;

printf("enter 2 nbrs\n") ;

scanf("%d%d", &x, &y) ;

q=0 ;

r=x ;

while (r>=y)

{

r-=y ;

q++ ;

}

printf("the quotient of

%d over %d is %d the

remainder is %d\n", x, y, q,

r) ;

}

3. « do… while» loop

The "Do...While" loop is a post-condition loop in which a set of

instructions is repeatedly executed. It is used when we have a set of

instructions that need to be repeated and executed at least once, regardless

of the condition (1 or more).

The loop consists of two parts:

• Instruction block: It is executed as long as the condition is true, except

the first time it is executed, regardless of the condition.

• Condition: An expression of Boolean type, with a value of either true or

false.

syntax

Algorithm C

do

Instruction block

while Condition

The rest of the instructions

do {

Instruction block

}

while (Condition) ;

The rest of the instructions

• The "do...while" loop always ends with a semicolon ";"

• The "do...while" loop can be expressed as "Repeat...Until"

(until the condition is satisfied). In this case, the condition

becomes a termination condition rather than a continuation

condition, which is the negation of the "while" loop

condition.

Repeat

Instruction block

Until not Condition

rest of the instruction

3.2. Algorigram

Con
d?

Bloc

reste

oui

non

Example
Write a program that reads a set of integers using a single variable, stops when it reads the first 0, and then

displays the number of integers entered.

Algorithm C Ecran

algorithm readNbrs

var x, nb :integer

/*x to read nbrs, nb to

count nbrs*/

begin

nb0

do

write ("enter a nbr")

read (x)

nbnb+1

while x≠0

write("The number of

numbers is", nb-1)

end

#include <stdio.h>

int main()

{

int x, nb ;

nb=0 ;

do {

printf("enter a nbr") ;

scanf("%d", &x) ;

nb++ ;

}

while (x!=0) ;

printf("The number of

numbers is %d", nb-1) ;

}

4. « for » loop
The "for" loop is an unconditional iterative loop in which a set of instructions is

executed iteratively a predetermined number of times.

The loop consists of two parts:

• Counter: To count the number of iterations, it is a variable of type integer or

character. It defines its initial value, final value, and the method to increment or

decrement it.

• Block of instructions: to be executed in each iteration.

« for » syntax in algorithms

Algorithm

For counter initial_value To final_value step step Do

Instruction block

end For

The rest of the instructions

• counter : A name for an integer or character variable.

• initial_value : This is the initial value taken by the counter variable.

• final_value : This is the final value the counter variable can take.

• step : It is the value to which the "counter" variable evolves at the end

of each iteration, where " counter counter + step." Usually,

"step" is equal to 1.

Comments
1. The value of "counter" cannot be modified inside the loop.

2. The “initial_value“ and "final_value" are calculated only once before the loop

execution.

3. The part "(step)" is optional, and if absent, it means that "step" is +1.

4. If the "step" is positive, it is added to "counter" until "counter ≥ final_value“.

5. In the case of a negative "step“, it is decremented until "counter ≤ final_value“.

6. "counter = final_value" is executed.

7. If "initial_value" is greater than "final_value" and the "step" is positive, the

"for" loop is not executed.

8. if "initial_value" is less than "final_value" and the "step" is negative, the "for"

loop is not executed.

« for » syntax in C
The "for" loop in C is more general than the "for" loop in the algorithm. It's closer to the conditional "while" loop than to

the "for" loop.

The general form Equivalent of algorithmic syntax
for (initialization ; test ; iteration)

{

Instruction block

}

The rest of the instructions

for (c=init_v ; c<=final_v ;

c++)

{

Instruction block

}

The rest of the instructions

The first line of the "for" loop consists of three parts enclosed in parentheses (), all optional, separated by a semicolon ";".

• Initialization: This part is executed once before the loop starts. It is usually used to assign an initial value to the counter.

For example: i=0.

• Condition: An expression of type Boolean. Its value must be true for the loop to execute. If the condition is false, the loop

is exited. It is evaluated at the beginning of each iteration of the loop. Usually, the counter is tested. For example: i<10.

• Iteration: It is executed at the end of each iteration. It is usually used to increment or decrement the counter. For example:

i++ or i--.

Remarks
• The variable (the counter) can be declared in the initialization part, in

which case its scope is limited to inside the "for" loop, not outside of it.

• The value of the counter in the iteration part can be incremented,

decremented, or modified in any other way.

• All parts of "for" (initialization, condition, iteration) are optional; they can

be omitted and left empty. However, the semicolon ";" is mandatory and

cannot be omitted. The following script is valid: for (; ;)

• The initialization part and the iteration part can contain multiple

instructions separated by commas ','.

• The semicolon ";" is the empty instruction.

example
The following example code is equivalent

int i=0;

Int j=10;

for (; ;){

if (!(i<j)) break;

i++;

j--;

}

for (int i=0, int j=10 ;i<j ; i++,j--);

Algorigram

Con
d?

Bloc insts

Reste insts

oui

non

initialisation

itération

Example

Write a program that reads two integers and then displays all the integers in between.

Algorithm C screen

algorithm numbers

var x, y, i :integer

/*i is the counter*/

begin

write ("enter 2 nbrs")

read (x, y)

for ix to y Do

write (i)

end for

end

#include <stdio.h>

int main()

{

int x, y, i ;

printf("enter 2 nbrs\n") ;

scanf("%d%d", &x, &y) ;

for (i=x ;i<=y ;i++)

printf("%d\t", i) ;

return 0 ;

}

5. Nested loops

one loop in another.

Example

Write a program that reads the number of lines n, and then displays on the screen in the first line

*, in the second line **, in the third line ***, and so on until it displays n * in the last line.

Algorithm C screen

algorithm stars

var n, i, j :integer

/*i, j counters*/

begin

write ("enter nbr. of lines")

read (n)

for i1 to n Do

for j1 to i Do

write("*")

end for

end for

end

#include <stdio.h>

int main()

{

int n, i, j ;

printf("enter nbr. of lines\n") ;

scanf("%d", &n) ;

for (i=1 ;i<=n ;i++) {

for (j=1 ;j<=i ;j++)

printf("*") ;

printf("\n") ;

}

return 0 ;}

6. Loop equivalence
In general:

• Any "While" loop can be expressed by the "Do" loop, by adding a condition before the "Do"

loop.

• Any "Do" loop can be expressed by the "While" loop, by adding the block of instructions

before the "While" loop.

• Any "For" loop can be expressed by the "While" loop, by assigning the initial value of the

counter before the "While" loop, using the final value as the termination condition, and

adding the instruction that modifies the value of the counter at the end of the loop.

• However, it is not always possible to express the "While" loop or the "Do" loop with the

"For" loop in algorithm, unless there is a counter.

• In C, "While" or "Do...While" loops can be expressed with "For", and all loops can be

expressed with "Goto" and "If“ statement.

While examples
while do…while

…

r=x ;

while (r>=y) {

r-=y ;

q++ ;

}

printf(…) ;

}

…

r=x ;

if (r>=y)

do {

r-=y ;

q++ ;

} while (r>=y)

printf(…) ;

}

for goto +if

…

r=x ;

for (;r>=y;) {

r-=y ;

q++ ;

}

printf(…) ;

}

…

r=x ;

again :

if (r>=y) {

r-=y ;

q++ ;

goto again ;

}

printf(…) ;

}

do…while
do…while while for goto +if

…

nb=0 ;

do {

printf("enter a nbr") ;

scanf("%d", &x) ;

nb++ ;

} while (x!=0) ;

printf(…) ;

}

…

nb=0 ;

printf("enter a nbr") ;

scanf("%d", &x) ;

nb++ ;

while (x!=0) {

printf("entrer un

nbr") ;

scanf("%d", &x) ;

nb++ ;

}

printf(…) ;

}

…

nb=0 ;

printf("enter a nbr") ;

scanf("%d", &x) ;

nb++ ;

for (;x!=0 ;) {

printf("enter a

nbr") ;

scanf("%d", &x) ;

nb++ ;

}

printf(…) ;

}

…

r=x ;

again :

printf("enter a nbr") ;

scanf("%d", &x) ;

nb++ ;

if (r>y)

goto again ;

printf(…) ;

}

for

for while do…while goto +if

…

for (i=x;i<=y;i++)

printf("%d\t",i);

…

…

i=x ;

while (i<=y){

printf("%d\t",i);

i++ ;

}

…

…

i=x ;

if (i<=y)

do {

printf("%d\t",i);

i++ ;

} while (i<=y)

…

…

i=x ;

again :

if (i<=y) {

printf("%d\t",i);

i++ ;

goto again ;

}

…

7. Loop termination commands

• These commands are used within the loop to perform an early exit from the loop,

generally when checking a condition.

• Any "for," "while," or "do...while" loop can be terminated by executing any of the

jump instructions such as: break, return, or goto (to a label outside the loop).

• The continue statement only terminates the current iteration, jumps to the end of

the loop, and starts the next iteration.

• These instructions are used within an "if" statement.

• In the case of nested loops, break and continue only exit the inner loop.

Example
for (int i=1 ;i<10 ;i++){

if(i%3==0) continue ;

printf("%d\t", i) ;

}

for (int i=1 ;i<10 ;i++){

if(i%3==0) break ;

printf("%d\t", i) ;

}

All numbers will appear, going beyond

the multiple of 3

1 2 4 5 7 8

The loop stops at the first multiple of 3

1 2

End of Chapter 04

