Chapter 3: Relative motion

I- Introduction

Motion is always defined with respect to an observer or reference frame. So, it is necessary to choose a reference frame in order to determine the position, velocity and acceleration of an object at each instant.

The reference frame can be stationary or moving:

- Stationnary" or "absolute" referential: is attached to the observer and it is fixe, usually with respect to the earth ($\mathfrak{R}(\mathrm{O}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$).
- Relative referential: is is itself moving $\left(\Re^{\prime}\left(O^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}\right)\right.$).

The position, velocity and acceleration depend on the frame and they can be transformed to get their equivalents in another frame.

II- Description of the motion

II.1- Motion in absolute referential

The motion is described in the absolute referential $\mathfrak{R}(\mathrm{O}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$:

- The absolute position vector: $\overrightarrow{O M}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$
- The absolute velocity vector: $\overrightarrow{V_{a}}=\overrightarrow{V_{M / R}}=\left.\frac{d \overrightarrow{O M}}{d t}\right|_{R}=\dot{x} \vec{\imath}+\dot{y} \vec{\jmath}+\dot{z} \vec{k}$
- The absolute acceleration vector: $\overrightarrow{a_{a}}=\overrightarrow{a_{M / R}}=\left.\frac{d^{2} \overrightarrow{O M}}{d t^{2}}\right|_{R}=\left.\frac{d \vec{V}}{d t}\right|_{R}=\ddot{x} \vec{\imath}+\ddot{y} \vec{\jmath}+\ddot{z} \vec{k}$

II .2- Motion in relative referential

The motion is described in the relative referential $\mathfrak{\Re}(\dot{O}, X \in, Y, Z \dot{Y})$. The base of the relative referential is $(\vec{i}, \vec{j}, \vec{k})$. These vectors are fixe in \mathfrak{R}, but they move with time in R :

- The relative position vector: $\overrightarrow{O M}=\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \vec{k}$
- The relative velocity vector: $\overrightarrow{V_{r}}=\overrightarrow{V_{M / \tilde{R}}}=\left.\frac{d \overrightarrow{O M}}{d t}\right|_{\dot{R}}=\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \vec{k}$
- The relative acceleration vector: $\overrightarrow{a_{r}}=\overrightarrow{a_{M / \tilde{R}}}=\left.\frac{d \overrightarrow{V_{r}}}{d t}\right|_{\dot{R}}=\left.\frac{d^{2} \overrightarrow{\sigma_{2}}}{d t^{2}}\right|_{\dot{R}}=\ddot{x} \vec{i}+\ddot{y} \vec{j}+\ddot{z} \vec{z}$

III- Basic equations

III.1- Velocity vector

$$
\begin{gathered}
\overrightarrow{V_{a}}=\overrightarrow{V_{M / R}}=\left.\frac{d \overrightarrow{O M}}{d t}\right|_{R}=\left.\frac{d}{d t}(\overrightarrow{O O}+\overrightarrow{O M})\right|_{R} \\
\overrightarrow{O M}=\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \vec{k} \\
\overrightarrow{V_{a}}=\left.\frac{d \overrightarrow{O O}}{d t}\right|_{R}+\left.\frac{d}{d t}(\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \vec{k})\right|_{R} \\
\overrightarrow{V_{a}}=\left.\frac{d \overrightarrow{o \vec{o}}}{d t}\right|_{R}+\frac{d \dot{x}}{d t} \vec{i}+\dot{x} \frac{d \vec{i}}{d t}+\frac{d \dot{y}}{d t} \vec{j}+\dot{y} \frac{d \vec{j}}{d t}+\frac{d \dot{z}}{d t} \vec{i}+\dot{z} \frac{d \vec{k}}{d t} \\
\overrightarrow{\boldsymbol{V}_{\boldsymbol{a}}}=\left(\left.\frac{d \overrightarrow{o \partial}}{d t}\right|_{R}+\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \vec{k}}{d t}\right)\right)+\left(\frac{d \dot{x}}{d t} \vec{i}+\frac{d \dot{y}}{d t} \vec{j}+\frac{d \dot{z}}{d t} \overrightarrow{\boldsymbol{k}}\right) \\
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{o g}}{d t}\right|_{R}+\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \vec{k}}{d t}\right) \\
\overrightarrow{V_{r}}=\frac{d \dot{x} \dot{i}}{d t} \vec{i}+\frac{d y}{d t} \vec{j}+\frac{d \dot{z}}{d t} \vec{k}=\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \vec{k} \\
\overrightarrow{V_{\boldsymbol{a}}}=\overrightarrow{V_{e}}+\overrightarrow{V_{r}}
\end{gathered}
$$

$\overrightarrow{\mathrm{V}_{\mathrm{e}}}$: Entrainment velocity, It's the velocity of the moving referential R^{\prime} relative to the fixed referential R.

III.2- Acceleration vector

$$
\begin{aligned}
& \overrightarrow{V_{a}}=\left.\frac{d \overrightarrow{o g}}{d t}\right|_{R}+\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \vec{k}}{d t}\right)+(\dot{x} \overrightarrow{\boldsymbol{i}}+\dot{y} \vec{y}+\dot{z} \overrightarrow{\boldsymbol{k}}) \\
& \overrightarrow{a_{a}}=\overrightarrow{a_{M / R}}=\left.\frac{d^{2} \overrightarrow{O M}}{d t^{2}}\right|_{R}=\left.\frac{d \vec{V}}{d t}\right|_{R} \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{a}}}=\left.\frac{d^{2} \overrightarrow{o b}}{d t^{2}}\right|_{R}+\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{x} \frac{d^{2} \vec{i}}{d t^{2}}+\dot{y} \frac{d \vec{j}}{d t}+\dot{y} \frac{d^{2} \vec{j}}{d t^{2}}+\dot{z} \frac{d \vec{k}}{d t}+\dot{z} \frac{d^{2} \vec{k}}{d t^{2}}\right)+ \\
& \left(\ddot{x} \vec{i}+\dot{x} \frac{d \vec{i}}{d t}+\ddot{y} \vec{j}+\dot{y} \frac{d \vec{j}}{d t}+\ddot{z} \vec{k}+\dot{z} \frac{d \vec{k}}{d t}\right) \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{a}}}=\left.\frac{d^{2} \overrightarrow{o g}}{d t^{2}}\right|_{R}+\left(\dot{x} \frac{d^{2} \vec{i}}{d t^{2}}+y \frac{d^{2} \vec{j}}{d t^{2}}+\dot{z} \frac{d^{2} \vec{k}}{d t^{2}}\right)+2\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \vec{k}}{d t}\right)+(\ddot{x} \vec{i}+\ddot{y} \vec{j}++\ddot{z} \vec{k}) \\
& \overrightarrow{a_{e}}=\left.\frac{d^{2} \overrightarrow{o b}}{d t^{2}}\right|_{R}+\left(\dot{x} \frac{d^{2} \vec{i}}{d t^{2}}+\dot{y} \frac{d^{2} \vec{j}}{d t^{2}}+\dot{z} \frac{d^{2} \vec{k}}{d t^{2}}\right) \\
& \overrightarrow{a_{c}}=2\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \overrightarrow{\hat{k}}}{d t}\right) \\
& \overrightarrow{a_{r}}=\ddot{x} \vec{i}+\ddot{y} \vec{j}++\ddot{z} \vec{k} \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{a}}}=\overrightarrow{\boldsymbol{a}_{e}}+\overrightarrow{\boldsymbol{a}_{c}}+\overrightarrow{\boldsymbol{a}_{r}}
\end{aligned}
$$

$\overrightarrow{a_{e}}$: Entrainment acceleration.
$\overrightarrow{a_{c}}$: Coriolis acceleration or additional acceleration.
$\overrightarrow{a_{r}}$: Relative acceleration.

The Coriolis acceleration is the result of the rotation of the Earth on itself.

IV- Special cases of motion of \mathbf{R}^{\prime} relative to \mathbf{R}

IV.1- Translation and rotation motion

$R \mid \boldsymbol{R}:$ Rotation \& translation

IV.1.1- Velocity vector

R^{\prime} rotates around a fixed axis (Δ) and the distance between o and o ' is not fixed.

In the previous chapter, we showed that if an object M is rotating about (OZ):

$$
\vec{V}=\frac{d \overrightarrow{O M}}{d t}=\vec{\omega} \wedge \overrightarrow{O M}
$$

So, we can write: $\quad \frac{d \vec{i}}{d t}=\vec{\omega} \wedge \vec{i}, \quad \frac{d \vec{j}}{d t}=\vec{\omega} \wedge \vec{j}, \quad \frac{d \vec{k}}{d t}=\vec{\omega} \wedge \vec{k}$

$$
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{o b}}{d t}\right|_{R}+\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \vec{k}}{d t}\right)
$$

$$
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{o g}}{d t}\right|_{R}+(\dot{x} \vec{\omega} \wedge \vec{i}+y \vec{y} \wedge \vec{j}+\dot{z} \vec{\omega} \wedge \vec{k})
$$

$$
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{o \vec{o}}}{d t}\right|_{R}+(\vec{\omega} \wedge \dot{x} \vec{i}+\vec{\omega} \wedge y \vec{j}+\vec{\omega} \wedge \dot{z} \vec{k})
$$

$$
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{o g}}{d t}\right|_{R}+\vec{\omega} \wedge(\vec{x} \vec{i}+y \vec{j}+\dot{z} \vec{k})
$$

$$
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{O O}}{d t}\right|_{R}+\vec{\omega} \wedge \overrightarrow{O M}
$$

$$
\overrightarrow{V_{a}}=\overrightarrow{V_{r}}+\left.\frac{d \overrightarrow{o \partial}}{d t}\right|_{R}+\vec{\omega} \wedge \overrightarrow{O_{0}^{\prime M}}
$$

IV.1.2- Acceleration vector

$$
\begin{gathered}
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{o \vec{o}}}{d t^{2}}\right|_{R}+\left(\dot{x} \frac{d^{2} \vec{i}}{d t^{2}}+\dot{y} \frac{d^{2} \vec{j}}{d t^{2}}+\dot{z} \frac{d^{2} \overrightarrow{\boldsymbol{k}}}{d t^{2}}\right) \\
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{o g}}{d t^{2}}\right|_{R}+\left(\dot{x} \frac{d}{d t} \frac{d \vec{i}}{d t}+\dot{y} \frac{d}{d t} \frac{d \vec{j}}{d t}+\dot{z} \frac{d}{d t} \frac{d \vec{k}}{d t}\right)
\end{gathered}
$$

$$
\overrightarrow{\boldsymbol{a}_{\boldsymbol{e}}}=\left.\frac{d^{2} \overrightarrow{\boldsymbol{o}}}{d t^{2}}\right|_{R}+\dot{\boldsymbol{x}} \frac{d}{d t}(\overrightarrow{\boldsymbol{\omega}} \wedge \overrightarrow{\boldsymbol{\imath}})+\dot{\boldsymbol{y}} \frac{d}{d t}(\overrightarrow{\boldsymbol{\omega}} \wedge \overrightarrow{\boldsymbol{\jmath}})+\dot{\mathbf{z}} \frac{d}{d t}(\overrightarrow{\boldsymbol{\omega}} \wedge \overrightarrow{\boldsymbol{\kappa}})
$$

$$
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{o b}}{d t^{2}}\right|_{R}+\dot{\boldsymbol{x}}\left(\frac{d \vec{\omega}}{d t} \wedge \overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{\omega}} \wedge \frac{d \vec{i}}{d t}\right)+\dot{\boldsymbol{y}}\left(\frac{d \vec{\omega}}{d t} \wedge \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{\omega}} \wedge \frac{d \vec{j}}{d t}\right)+\dot{\boldsymbol{z}}\left(\frac{d \vec{\omega}}{d t} \wedge \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{\omega}} \wedge \frac{d \overrightarrow{\boldsymbol{k}}}{d t}\right)
$$

$$
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{o g}}{d t^{2}}\right|_{R}+\dot{x}\left[\frac{d \vec{\omega}}{d t} \wedge \vec{i}+\overrightarrow{\boldsymbol{\omega}} \wedge(\overrightarrow{\boldsymbol{\omega}} \wedge \vec{i})\right]+\dot{y}\left[\frac{d \vec{\omega}}{d t} \wedge \vec{j}+\overrightarrow{\boldsymbol{\omega}} \wedge(\vec{\omega} \wedge \vec{j})\right]
$$

$$
+\dot{z}\left[\frac{d \vec{\omega}}{d t} \wedge \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{\omega}} \wedge(\vec{\omega} \wedge \overrightarrow{\boldsymbol{k}})\right]
$$

$$
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{o g}}{d t^{2}}\right|_{R}+\left[\frac{d \vec{\omega}}{d t} \wedge \dot{x} \overrightarrow{\boldsymbol{i}}+\overrightarrow{\boldsymbol{\omega}} \wedge(\overrightarrow{\boldsymbol{\omega}} \wedge \dot{x} \overrightarrow{\boldsymbol{i}})\right]+\left[\frac{d \vec{\omega}}{d t} \wedge \dot{y} \overrightarrow{\boldsymbol{j}}+\overrightarrow{\boldsymbol{\omega}} \wedge(\overrightarrow{\boldsymbol{\omega}} \wedge \dot{y} \overrightarrow{\boldsymbol{j}})\right]
$$

$$
+\left[\frac{d \vec{\omega}}{d t} \wedge z \overrightarrow{\boldsymbol{k}}+\overrightarrow{\boldsymbol{\omega}} \wedge(\overrightarrow{\boldsymbol{\omega}} \wedge \dot{z} \overrightarrow{\boldsymbol{k}})\right]
$$

$$
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{\boldsymbol{O}}}{d t^{2}}\right|_{R}+\left[\frac{d \vec{\omega}}{d t} \wedge \dot{x} \vec{i}+\frac{d \vec{\omega}}{d t} \wedge \dot{y} \overrightarrow{\boldsymbol{j}}+\frac{d \vec{\omega}}{d t} \wedge^{\prime} \overrightarrow{\mathrm{k}}\right]
$$

$$
+[\vec{\omega} \wedge(\vec{\omega} \wedge \dot{x} \vec{i})+\vec{\omega} \wedge(\vec{\omega} \wedge \dot{y} \overrightarrow{\boldsymbol{j}})+\vec{\omega} \wedge \overrightarrow{(\boldsymbol{\omega}} \wedge ́ z \overrightarrow{\boldsymbol{k}})]
$$

$$
\begin{aligned}
& \left.\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{o b}}{d t^{2}}\right|_{R}+\frac{d \vec{\omega}}{d t} \wedge\left[x \vec{x} \overrightarrow{\boldsymbol{i}}+\dot{y} \overrightarrow{\boldsymbol{j}}+z_{z} \overrightarrow{\boldsymbol{k}}\right]+\overrightarrow{\boldsymbol{\omega}} \wedge[(\overrightarrow{\boldsymbol{\omega}} \wedge \dot{x} \overrightarrow{\boldsymbol{i}})+(\overrightarrow{\boldsymbol{\omega}} \wedge \dot{y} \overrightarrow{\boldsymbol{j}})+\overrightarrow{(\boldsymbol{\omega}} \wedge z \overrightarrow{\boldsymbol{k}})\right] \\
& \overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{\boldsymbol{o g}}}{d t^{2}}\right|_{R}+\frac{d \vec{\omega}}{d t} \wedge[x \vec{x}+\dot{y} \overrightarrow{\boldsymbol{j}}+z \overrightarrow{\boldsymbol{\hat { k }}}]+\overrightarrow{\boldsymbol{\omega}} \wedge[\overrightarrow{\boldsymbol{\omega}} \wedge(\dot{x} \overrightarrow{\boldsymbol{i}}+\dot{y} \overrightarrow{\boldsymbol{j}}+\dot{z} \overrightarrow{\boldsymbol{k}})] \\
& \overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{O \partial}}{d t^{2}}\right|_{R}+\frac{d \vec{\omega}}{d t} \wedge\left[\overrightarrow{O^{\prime} M}\right]+\overrightarrow{\boldsymbol{\omega}} \wedge\left[\overrightarrow{\boldsymbol{\omega}} \wedge \overrightarrow{\boldsymbol{O}^{\prime} M}\right] \\
& \overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{O \partial}}{d t^{2}}\right|_{R}+\overrightarrow{\dot{\omega}} \wedge \overrightarrow{O^{\prime} M}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right) \\
& \overrightarrow{a_{c}}=2\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \overrightarrow{\hat{k}}}{d t}\right) \\
& \overrightarrow{a_{c}}=2(\dot{x}(\vec{\omega} \wedge \vec{i})+\dot{y}(\vec{\omega} \wedge \vec{\jmath})+\dot{z}(\vec{\omega} \wedge \vec{k})) \\
& \left.\overrightarrow{a_{c}}=2((\vec{\omega} \wedge \dot{x} \vec{i})+\overrightarrow{(\omega} \wedge \dot{y} \vec{\jmath})+(\vec{\omega} \wedge \dot{z} \overrightarrow{\hat{k}})\right) \\
& \overrightarrow{a_{c}}=2(\vec{\omega} \wedge(\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \overrightarrow{\boldsymbol{k}})) \\
& \overrightarrow{a_{c}}=2\left(\vec{\omega} \wedge \overrightarrow{V_{r}}\right) \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{a}}}=\overrightarrow{\boldsymbol{a}_{r}}+\left.\frac{d^{2} \overrightarrow{O D}}{d t^{2}}\right|_{R}+\overrightarrow{\boldsymbol{\omega}} \wedge \overrightarrow{O_{O}^{\prime M}}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right)+2\left(\vec{\omega} \wedge \overrightarrow{V_{r}}\right)
\end{aligned}
$$

IV.2- Translation motion

IV.2.1- Velocity vector

R^{\prime} is in translation with respect to R , the directions related to $\mathrm{R}^{\prime}((\vec{i}, \vec{j}, \vec{k}))$ are fixed in $\mathrm{R}(\vec{\omega}=\overrightarrow{0})$. $\frac{d \vec{i}}{d t}=\frac{d \vec{j}}{d t}=\frac{d \vec{k}}{d t}=\overrightarrow{0}$, donc:

$$
\begin{gathered}
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{o \partial}}{d t}\right|_{R}+\left(\dot{x} \frac{d t}{d t}+\dot{y} \frac{d j}{d t}+\dot{z} \frac{d \vec{R}}{d t}\right) \\
\overrightarrow{V_{e}}=\left.\frac{d \overrightarrow{00}}{d t}\right|_{R} \\
\overrightarrow{V_{a}}=\overrightarrow{V_{r}}+\left.\frac{d \overrightarrow{o \partial}}{d t}\right|_{R}
\end{gathered}
$$

IV.2.2- Acceleration vector

$$
\begin{gathered}
\overrightarrow{a_{e}}=\left.\frac{d^{2} \overrightarrow{o b}}{d t^{2}}\right|_{R}+\left(\dot{x} \frac{d^{2} \dot{i}}{d t^{2}}+\dot{y} \frac{d^{2} j}{d t^{2}}+\dot{z} \frac{d^{2} \vec{k}}{d t^{2}}\right) \\
\overrightarrow{\boldsymbol{a}_{e}}=\left.\frac{d^{2} \overrightarrow{O O}}{d t^{2}}\right|_{R} \\
\overrightarrow{\boldsymbol{a}_{c}}=2\left(\dot{x} \frac{d \vec{i}}{d t}+\dot{y} \frac{d \vec{j}}{d t}+\dot{z} \frac{d \vec{k}}{d t}\right) \\
\overrightarrow{a_{c}}=\overrightarrow{0} \\
\overrightarrow{\boldsymbol{a}_{a}}=\overrightarrow{a_{r}}+\left.\frac{d^{2} \overrightarrow{O O}}{d t^{2}}\right|_{R}
\end{gathered}
$$

Remark

If the motion of \grave{R} / R is a uniform rectilinear motion:

$$
\begin{gathered}
\left.\frac{d \overrightarrow{O O}}{d t}\right|_{R}=\overrightarrow{V_{0}} \quad\left(V_{0}=C^{s t e}\right) \\
\overrightarrow{V_{e}}=\overrightarrow{V_{0}} \\
\overrightarrow{\boldsymbol{O O}}=\overrightarrow{V_{0}} t \\
\overrightarrow{V_{a}}=\overrightarrow{V_{r}}+\overrightarrow{V_{0}} \\
\overrightarrow{a_{e}}=\left.\frac{d^{2} \overrightarrow{\sigma_{0}}}{d t^{2}}\right|_{R} \\
\overrightarrow{a_{e}}=\left.\frac{d \overrightarrow{V_{0}}}{d t}\right|_{R} \\
\overrightarrow{a_{e}}=\overrightarrow{0} \\
\overrightarrow{a_{a}}=\overrightarrow{a_{r}}
\end{gathered}
$$

IV.3- Rotational motion about a fixed axis

IV.3.1- Velocity vector

In this case: $\left.\frac{d \overrightarrow{o \partial}}{d t}\right|_{R}=\overrightarrow{0}$

$$
\begin{gathered}
\overrightarrow{V_{e}}= \\
\overrightarrow{V_{e}}=\vec{\omega} \wedge \overrightarrow{O^{\prime} M} \\
\overrightarrow{V_{a}}=\overrightarrow{O_{r}^{\prime M}} \\
\overrightarrow{a_{e}}+\vec{\omega} \wedge \overrightarrow{d^{2} O \underline{O} M} \\
d t^{2} \\
R
\end{gathered}+\vec{\omega} \wedge \overrightarrow{O^{\prime} M}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right)
$$

$$
\begin{gathered}
\overrightarrow{a_{e}}=\vec{\omega} \wedge \overrightarrow{O_{M} M}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right) \\
\overrightarrow{a_{c}}=2\left(\vec{\omega} \wedge \overrightarrow{V_{r}}\right) \\
\overrightarrow{\boldsymbol{a}_{a}}=\overrightarrow{a_{r}}+\overrightarrow{\omega_{0}} \wedge \overrightarrow{O^{\prime} M}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right)+2\left(\vec{\omega} \wedge \overrightarrow{V_{r}}\right)
\end{gathered}
$$

Remark

If the angular velocity is constant (uniform rotation):

$$
\begin{gathered}
\|\vec{\omega}\|=\mathbf{0} \\
\overrightarrow{a_{e}}=\overrightarrow{\omega_{\omega}} \wedge \overrightarrow{O_{M}^{\prime M}}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right) \\
\overrightarrow{a_{e}}=\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right) \\
\overrightarrow{a_{a}}=\overrightarrow{a_{r}}+\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{O^{\prime} M}\right)+2\left(\vec{\omega} \wedge \overrightarrow{V_{r}}\right)
\end{gathered}
$$

Exercise

Consider two cars A and B moving on two lines at speeds of $70 \mathrm{~km} / \mathrm{h}$ and $90 \mathrm{~km} / \mathrm{h}$ respectively.
Calculate the velocity of B relative to A when the two cars are moving:

- On two parallel lines in the same direction and in the opposite direction.
- On two lines forming an angle of 60° (in the opposite direction).

Solution

A and B are on two parallel lines in the same direction:

$$
\begin{gathered}
\overrightarrow{V_{B / R}}=90 \vec{\imath} \quad, \quad \overrightarrow{V_{A / R}}=70 \vec{\imath} \\
\overrightarrow{V_{a}}=\overrightarrow{V_{r}}+\overrightarrow{V_{e}}
\end{gathered}
$$

$$
\begin{gathered}
\overrightarrow{V_{B / R}}=\overrightarrow{V_{B / A}}+\overrightarrow{V_{A / R}} \\
\overrightarrow{V_{B / A}}=\overrightarrow{V_{B / R}}-\overrightarrow{V_{A / R}}=\mathbf{9 0} \vec{\imath}-70 \vec{\imath} \\
\overrightarrow{V_{B / A}}=20 \vec{\imath}
\end{gathered}
$$

- A and B are on two parallel lines in the opposite direction:

$$
\overrightarrow{V_{B / R}}=90 \vec{\imath} \quad, \quad \overrightarrow{V_{A / R}}=-70 \vec{\imath}
$$

$$
\overrightarrow{V_{B / A}}=\overrightarrow{V_{B / R}}-\overrightarrow{V_{A / R}}=90 \vec{\imath}+70 \vec{\imath}
$$

$$
\overrightarrow{V_{B / A}}=160 \vec{l}
$$

- On two lines forming an angle of 60° (in the opposite direction).

$$
\begin{gathered}
\overrightarrow{V_{B / R}}=90 \vec{\imath} \quad, \quad \overrightarrow{V_{A / R}}=-70 \cos 60 \vec{\imath}-70 \sin 60 \vec{\jmath} \\
\overrightarrow{V_{A / R}}=-70 \frac{1}{2} \vec{\imath}-70 \frac{\sqrt{3}}{2} \vec{\jmath} \\
\overrightarrow{V_{A / R}}=-35 \vec{\imath}-35 \sqrt{3} \vec{\jmath} \\
\overrightarrow{V_{B / A}}=\overrightarrow{V_{B / R}}-\overrightarrow{V_{A / R}} \\
\overrightarrow{V_{B / A}}=\mathbf{9 0} \vec{\imath}-(-35 \vec{\imath}-35 \sqrt{3} \vec{\jmath}) \\
\overrightarrow{V_{B / A}}=125 \vec{\imath}+35 \sqrt{3} \vec{\jmath} \\
V_{B / A}=138.9 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

