Mohamed Boudiaf University of Msila.
Faculty of sciences
Field : Sciences of matter (SM)
1st year LMD Semester 01.

جامعـة محمد بوضبـاف ـالمسيلـة
كليـة العلـوم
ميدان : علوم المادة
السنة الأولىى لـد ـ ـ السداسي 01

Physics 01: Mechanics of point particle.

Solutions of tutorial $\mathbf{N}^{\circ} 05$ Practice: Energy and work

EXERCISE 01

Net force $\left.\vec{F}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}=(\vec{\imath}+2 \vec{\jmath}+3 \vec{k})+\overrightarrow{(4 \imath}-5 \vec{\jmath}-2 \vec{k}\right)=\overrightarrow{5 \imath}-3 \vec{\jmath}+\vec{k}$
Displacement $\overrightarrow{r_{21}}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}=(20 \vec{\imath}+15 \vec{\jmath})-7 \vec{k}=20 \vec{\imath}+15 \vec{\jmath}-7 \vec{k} \mathrm{~cm}$
Work done $\left.W=\vec{F} \cdot \overrightarrow{r_{21}}=\overrightarrow{(5 \imath}-3 \vec{\jmath}+\vec{k}\right) \cdot(0.20 \vec{\imath}+0.15 \vec{\jmath}-0.07 \vec{k})=0.48 \mathrm{~J}$
Or:

$$
\begin{gathered}
W=\int_{\mathbf{0}}^{\mathbf{0} .02} \mathbf{F}_{\mathbf{x}} \cdot \mathbf{d x}+\int_{\mathbf{0}}^{\mathbf{0} .15} \mathbf{F}_{\mathbf{y}} \cdot \mathbf{d y}+\int_{\mathbf{0 . 0 7}}^{\mathbf{0}} \mathbf{F}_{\mathbf{z}} \cdot \mathbf{d z} \\
W=\int_{0}^{0.02} 5 . \mathrm{dx}-\int_{0}^{0.15} 3 . \mathrm{dy}+\int_{0.07}^{0} \mathrm{dz} \\
W=\left.5 x\right|^{0.02}-\left.5 y\right|_{0} ^{0.15}+\left.z\right|_{0} ^{0} \\
0 \quad \mathbf{0} 4 \mathbf{J}
\end{gathered}
$$

EXERCISE 02

a- $E_{p}(x)=5 x^{2}-4 x^{3}$

$$
\vec{F}=-\overrightarrow{g r a d} E_{p}(x)=-\frac{\partial E_{p}(x)}{\partial x} \vec{\imath}=-\frac{d E_{p}(x)}{d x} \vec{\imath}=\left(-10 x+12 x^{2}\right) \vec{\imath}
$$

b - For equilibrium: $\frac{d E_{p}(x)}{d x} \Rightarrow \boldsymbol{F}=\mathbf{0}$
$-10 x+12 x^{2}=0$

$$
(-10+12 x) x=0 \Rightarrow x=0 \text { or } x=\frac{5}{6} \mathrm{~m}
$$

To know the stable equilibrium position and unstable equilibrium position, we study the sign of $\frac{d^{2} E_{p}(x)}{d x^{2}}$
$\frac{d^{2} E_{p}(x)}{d x^{2}}=\frac{d F}{d x}=24 x-10$
$\left.\frac{d F}{d x}\right|_{x=0}=\left.(24 x-10)\right|_{x=0}=-10<0 \Rightarrow$ the position $x=0$ is stable.
$\left.\frac{d F}{d x}\right|_{x=\frac{5}{6}}=\left.(24 x-10)\right|_{x=\frac{5}{6}}=+10>0 \Rightarrow$ the position $x=\frac{5}{6}$ is unstable

EXERCISE 03

$\mathrm{m}=40 \mathrm{~kg}, \mathrm{~V}_{0}=0 \mathrm{~m} / \mathrm{s}, \mathrm{x}=5 \mathrm{~m}, \mathrm{~F}=130 \mathrm{~N}, \mu=0.3$.
1- The work done by the applied force.

$$
\mathrm{W}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{app}}\right)=\int_{A}^{B} \overrightarrow{\mathrm{~F}}_{\mathrm{app}} \cdot \overrightarrow{\mathrm{dr}}=\int_{A}^{B} \mathrm{~F}_{\text {app }} \cdot \mathrm{dr} \cdot \cos \theta=\mathrm{F}_{\text {app }} \cdot \mathrm{d} \cdot \cos 0=130 \times 5
$$

$$
\Rightarrow \mathrm{W}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{app}}\right)=650 \mathrm{~J}
$$

2- The energy lost due to friction.

$$
\begin{gathered}
\mathrm{W}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{f}}\right)=\int_{A}^{B} \overrightarrow{\mathrm{~F}}_{\mathrm{f}} \cdot \overrightarrow{\mathrm{dr}}=\int_{A}^{B} \mathrm{~F}_{\mathrm{f}} \cdot \mathrm{dr} \cdot \cos \theta=\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d} \cdot \cos 180 \\
\mathrm{~F}_{\mathrm{f}}=\mu \mathrm{N}=\mu \mathrm{mg} \quad(\mathrm{~N}=\mathrm{mg}) \\
\mathrm{W}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{f}}\right)=-\mu \mathrm{mg} \mathrm{~d} \\
\Rightarrow \mathrm{~W}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{f}}\right)=-0.3 \times 40 \times 9.8 \times 5 \Rightarrow \mathrm{~W}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{f}}\right)=-\mathbf{5 9 0} \mathbf{J}
\end{gathered}
$$

So, $5.9 \times 10^{2} \mathrm{~J}$ of energy is lost to friction.

3- The change in kinetic energy of the box.
$\Delta \mathbf{E}_{\mathbf{k}}=\mathbf{E}_{\mathbf{k}}(\mathbf{B})-\mathbf{E}_{\mathbf{k}}(\mathbf{A})=\mathbf{W} \sum(\overrightarrow{\mathrm{F}})_{=} \mathrm{W}\left(\overrightarrow{\mathrm{F}}_{\mathrm{app}}\right)+\mathrm{W}\left(\overrightarrow{\mathrm{F}}_{\mathrm{f}}\right)$
$\overrightarrow{\mathrm{N}}$ and $\mathrm{m} \overrightarrow{\mathrm{g}}$ do no work on the box as it moves, because they are perpendicular to the deplacement.
$\Delta \mathbf{E}_{\mathbf{k}}=\mathrm{W}\left(\overrightarrow{\mathrm{F}}_{\mathrm{app}}\right)+\mathrm{W}\left(\overrightarrow{\mathrm{F}}_{\mathrm{f}}\right)=650-590 \Rightarrow \Delta \mathbf{E}_{\mathbf{k}}=\mathbf{6 0} \mathbf{~ J}$
$\mathbf{W}_{\mathrm{A} \rightarrow \mathrm{B}}=\mathbf{E}_{\mathrm{k}}(B)-\mathbf{E}_{\mathrm{k}}(\mathbf{A})=\frac{\mathrm{mv}_{\mathrm{B}}{ }^{2}}{2}-\frac{\mathrm{mv}_{\mathrm{A}}{ }^{2}}{2}=\Delta \mathbf{E}_{\mathrm{k}}$
4- The final velocity of the box.
$\mathbf{W}=\Delta \mathbf{E}_{\mathbf{k}}=\mathbf{E}_{\mathbf{k}}(\mathbf{5} \mathbf{m})-\mathbf{E}_{\mathbf{k}}(\mathbf{0} \mathbf{m})=\frac{\mathbf{m v}_{\mathbf{f}}{ }^{2}}{2}-\mathbf{0} \Rightarrow V_{f}=\sqrt{\frac{2 \Delta \mathbf{E}_{\mathbf{k}}}{m}}=\sqrt{\frac{2 \times 6 \mathbf{0}}{40}} \Rightarrow V_{f}=1.73 \mathrm{~m} / \mathrm{s}$

EXERCISE 04

$F_{f}=3 \mathrm{~N}$.
The work done by the friction force.
(a) path OA and return path AO ,

$$
\begin{gathered}
\mathbf{W}_{\mathbf{A} \rightarrow \mathbf{B}}\left(\overrightarrow{\mathrm{F}}_{\mathrm{f}}\right)=\int_{A}^{B} \overrightarrow{\mathrm{~F}}_{\mathrm{f}} \cdot \overrightarrow{\mathrm{dr}}=\int_{A}^{B} \mathrm{~F}_{\mathrm{f}} \cdot \mathrm{dr} \cdot \cos \theta=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d} \cdot \cos 180=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d} \\
\mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{O}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=\mathbf{W}_{\mathbf{O} \rightarrow \mathbf{A}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)+\mathbf{W}_{\mathbf{A} \rightarrow \mathbf{O}}\left(\overrightarrow{\mathrm{F}}_{\mathbf{f}}\right)=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{OA}+\left(-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{AO}\right)=-3 \times 5-3 \times 5 \\
\Rightarrow \mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{O}}\left(\overrightarrow{\mathbf{F}}_{\mathrm{f}}\right)=\mathbf{- 3 0} \mathbf{J}
\end{gathered}
$$

(b) path OA followed by AC and the return path CO .

$$
\begin{gathered}
\mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{O}}^{2}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=\mathbf{W}_{\mathbf{O} \rightarrow \mathbf{A}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)+\mathbf{W}_{\mathrm{A} \rightarrow \mathbf{C}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)+\mathbf{W}_{\mathbf{C} \rightarrow \mathbf{O}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{OA}+\left(-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{AC}\right)+\left(-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{CO}\right) \\
\mathrm{W}_{o \rightarrow 0}^{2}\left(\overrightarrow{\mathrm{~F}}_{\mathrm{f}}\right)=-3 \times 5-3 \times 5-3 \times \sqrt{50} \Rightarrow \mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{O}}^{2}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=-\mathbf{5 1 . 2} \mathbf{J}
\end{gathered}
$$

(c) path OC followed by the return path CO .

$$
\begin{gathered}
\mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{O}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=\mathbf{W}_{\mathbf{O} \rightarrow \mathrm{C}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)+\mathbf{W}_{\mathbf{C} \rightarrow \mathbf{O}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=-\mathrm{F}_{\mathrm{f}} . \mathrm{OC}+\left(-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{CO}\right)=-3 \times \sqrt{50}-3 \times \sqrt{50} \\
\Rightarrow \mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{3}}\left(\overrightarrow{\mathbf{F}}_{\mathbf{f}}\right)=-\mathbf{4 2 . 4} \mathbf{J}
\end{gathered}
$$

It can be observed that: $\mathbf{W}_{\boldsymbol{O} \rightarrow \boldsymbol{O}} \neq \mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{2}} \neq \mathbf{W}_{\boldsymbol{o} \rightarrow \boldsymbol{3}}$. So, we can conclude that the friction force is nonconservative force.

EXERCISE 05

A skier of mass m starts sliding from rest at the top of a solid frictionless hemisphere of radius r. At what angle θ will the skier leave the sphere?

By the application of FPD:

$$
\overrightarrow{\Sigma F_{\mathrm{ext}}}=m \vec{a}
$$

$\vec{W}+\vec{N}=\mathbf{m} \overrightarrow{\boldsymbol{a}} \Rightarrow$
$\left\{\begin{array}{c}m g \sin \theta=m a_{T} \\ m g \cos \theta-N=m \frac{V^{2}}{R} \Rightarrow \boldsymbol{N}=\boldsymbol{m g} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta } \boldsymbol { \theta }}-\boldsymbol{m} \frac{\boldsymbol{V}^{2}}{\boldsymbol{R}}\end{array}\right.$

When the skiers leaves the sphere, $\mathrm{N}=0 \Rightarrow N=m g \cos \theta-m \frac{V^{2}}{R}=0 \Rightarrow m g \cos \theta=m \frac{V^{2}}{R}$

$$
\Rightarrow V^{2}=R g \cos \boldsymbol{\theta}=R g \frac{\boldsymbol{h}}{\boldsymbol{R}} \Rightarrow \boldsymbol{V}^{2}=\boldsymbol{g} \boldsymbol{h}
$$

The motion is without friction $\Rightarrow \Delta \mathbf{E}_{\mathbf{M}}=\mathbf{0} \Rightarrow \mathbf{E}_{\mathbf{M} 2}=\mathbf{E}_{\mathbf{M} 1} \Rightarrow \mathbf{E}_{\mathbf{k} 2}+\mathbf{E}_{\mathbf{p} 2}=\mathbf{E}_{\mathbf{k} 1}+\mathbf{E}_{\mathbf{p} 1}$

$$
\begin{gathered}
\Rightarrow \frac{\mathrm{mV}^{2}}{2}+\mathrm{mgh}=0+\mathrm{mgR} \Rightarrow
\end{gathered} \frac{\mathrm{gh}}{2}+\mathrm{gh}=\mathrm{gR} \Rightarrow \frac{\mathrm{~h}}{2}+\mathrm{h}=\mathrm{R} \Rightarrow \frac{\mathrm{~h}}{2}+\mathrm{h}=\mathrm{R} ~ 子
$$

EXERCISE 06
$m=5 \mathrm{~g}, h=14.8 \mathrm{~m}, V_{A}=10 \mathrm{~m} / \mathrm{s} . d=20 \mathrm{~cm} . g=10 \mathrm{~m} / \mathrm{s}^{2}$.
1- Calculation of the velocity of the ball when it reaches the surface of the sand.
The air resistance is neglected $\Rightarrow \Delta \mathbf{E}_{\mathbf{M}}=\mathbf{0} \Rightarrow \mathbf{E}_{\mathbf{M}}(\mathbf{B})=\mathbf{E}_{\mathbf{M}}$ (A)

$$
\begin{aligned}
& \Rightarrow \mathbf{E}_{\mathbf{k}(\mathbf{B})+\mathbf{E}_{\mathbf{p}}(\mathbf{B})=\mathbf{E}_{\mathbf{k}}(\mathbf{A})+\mathbf{E}_{\mathbf{p}}(\mathbf{A})}^{\quad \Rightarrow \frac{\mathrm{mV}_{\mathrm{B}}{ }^{2}}{2}+0=\frac{\mathrm{mV}_{\mathrm{A}}^{2}}{2}+\mathrm{mgh}} \\
& \Rightarrow V_{\mathrm{B}}=\sqrt{\mathrm{V}_{\mathrm{A}}{ }^{2}+2 \mathrm{gh}}=\sqrt{10^{2}+2 \times 10 \times 14.8} \Rightarrow \mathbf{V}_{\mathbf{B}}=\mathbf{1 9 . 9} \mathbf{~ m} / \mathrm{s}
\end{aligned}
$$

2- The magnitude of the average force exerted by the sand on the ball.

$$
\begin{gathered}
\Rightarrow \Delta \mathbf{E}_{\mathrm{M}}=\mathbf{W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}} \\
\Rightarrow\left(\mathrm{E}_{\mathrm{c} 2}+\mathrm{E}_{\mathrm{p} 2}\right)-\left(\mathrm{E}_{\mathrm{c} 1}+\mathrm{E}_{\mathrm{p} 1}\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}} \Rightarrow 0-\mathrm{mgd}-\left(\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2}+0\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}} \\
\Rightarrow-\mathrm{mgd}-\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2}=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d} \Rightarrow \mathbf{F}_{\mathrm{f}}=\mathbf{m g}+\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2 \mathrm{~d}} \\
\Rightarrow \mathbf{F}_{\mathrm{f}}=\mathbf{5} \times \mathbf{1 0}^{-\mathbf{3}} \times \mathbf{1 0}+\frac{\mathbf{5 \times 1 0 ^ { - 3 } \times \mathbf { 1 9 . 9 }}}{\mathbf{2 \times 0 . 2}} \Rightarrow \mathbf{F}_{\mathrm{f}}=\mathbf{5} \mathbf{N}
\end{gathered}
$$

EXERCISE 07

In the part AB , the motion is frictionless: the kinetic energy $\boldsymbol{E}_{\boldsymbol{k}}$ available is equal to the loss of potential energy, $\boldsymbol{m g h}$:

$$
\begin{aligned}
\Delta \mathbf{E}_{\mathbf{M}}=\mathbf{0} \Rightarrow \quad \mathbf{E}_{\mathbf{M}}(\mathbf{B})=\mathbf{E}_{\mathbf{M}} & (\mathrm{A}) \\
& \Rightarrow \mathbf{E}_{\mathbf{k}}(\mathbf{B})+\mathbf{E}_{\mathbf{p}}(\mathbf{B})=\mathbf{E}_{\mathbf{k}}(\mathbf{A})+\mathbf{E}_{\mathbf{p}}(\mathbf{A}) \\
& \Rightarrow \frac{\mathrm{mV}_{\mathbf{B}}{ }^{2}}{2}+0=0+\mathrm{mgh}
\end{aligned}
$$

$\Rightarrow \mathbf{E}_{\mathbf{k}}(\mathbf{B})=\frac{\mathrm{mV}_{\mathrm{B}}{ }^{2}}{2}=\boldsymbol{m} \boldsymbol{g} \boldsymbol{h}$
On the flat track the entire kinetic energy is used up in the work done against friction

$$
\begin{gathered}
\Rightarrow \Delta \mathbf{E}_{\mathbf{M}}=\mathbf{W}_{\overrightarrow{\mathbf{F}}_{\mathbf{f}}} \\
\Rightarrow\left(\mathbf{E}_{\mathbf{k}}(\mathbf{C})+\mathbf{E}_{\mathbf{p}}(\mathbf{C})\right)-\left(\mathbf{E}_{\mathbf{k}}(\mathbf{B})+\mathbf{E}_{\mathbf{p}}(\mathbf{B})\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}} \Rightarrow 0-\mathrm{mgd}-\left(\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2}+0\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}_{\mathrm{f}}}} \\
\Rightarrow(0+0)-\left(\frac{\mathrm{m} V_{B}^{2}}{2}+0\right)=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d} \\
\Rightarrow-(\boldsymbol{m} \boldsymbol{g h})=-\mu \mathrm{mgd} \\
\Rightarrow d=\frac{h}{\mu}
\end{gathered}
$$

EXERCISE 08

A ball of mass m is released from a height H without initial velocity. AB is a vertical surface and $B C D E$ is a $3 / 4$ of a circle of radius R.

1- The ball moves without friction:

The motion is without friction $\Rightarrow \Delta \mathbf{E}_{\mathbf{M}}=\mathbf{0}$
a - The velocity of the ball at point B.
$\Delta \mathbf{E}_{M}=\mathbf{0} \Rightarrow \mathbf{E}_{\mathbf{M}}(B)=\mathbf{E}_{M}(\mathrm{~A}) \Rightarrow \mathbf{E}_{k}(B)+\mathbf{E}_{\mathrm{p}}(B)=\mathbf{E}_{\mathrm{k}}(\mathrm{A})+\mathbf{E}_{\mathrm{p}}(\mathrm{A})$

$\Rightarrow \frac{\mathrm{mV}_{\mathrm{B}}{ }^{2}}{2}+\mathrm{mgR}=0+\mathrm{mgh} \Rightarrow \mathbf{V}_{\mathbf{B}}=\sqrt{\mathbf{2 g (h - \mathbf { R })}}$
b - The velocity of the ball at point C.
$\Delta E_{M}=0 \Rightarrow E_{M}(C)=E_{M}(A) \Rightarrow E_{k}(C)+E_{p}(C)=E_{k}(A)+E_{p}(A)$
$\Rightarrow \frac{\mathrm{mV}_{\mathrm{C}}{ }^{2}}{2}+0=0+\mathrm{mgh} \Rightarrow \mathbf{V}_{\mathbf{c}}=\sqrt{\mathbf{2 g} \mathbf{h}}$
c- The value of h for which the ball reaches the point E with a velocity $\sqrt{2 g R}$.
$\Delta E_{M}=0 \Rightarrow E_{M}(E)=E_{M}(A) \Rightarrow E_{k}(E)+E_{p}(E)=E_{k}(A)+E_{p}(A)$
$\Rightarrow \frac{\mathrm{mV}_{\mathrm{E}}{ }^{2}}{2}+\mathrm{mg}(2 \mathrm{R})=0+\mathrm{mgh} \Rightarrow \frac{\mathrm{m} 2 \mathrm{gR}}{2}+\mathrm{mg}(2 \mathrm{R})=0+\mathrm{mgh} \Rightarrow \mathbf{h}=3 \mathbf{R}$
2- the value of F_{f} if the ball just reaches point E (the velocity at point E is zero) and the motion takes place with a constant tangential friction force F_{f} in the BCDE part only.

$$
\begin{gathered}
\Delta \mathbf{E}_{M}=\mathbf{W}_{\overrightarrow{\mathbf{F}_{f}}} \\
\Rightarrow\left(\mathbf{E}_{\mathbf{k}}(\mathbf{E})+\mathbf{E}_{\mathrm{p}}(\mathbf{E})\right)-\left(\mathbf{E}_{\mathrm{k}}(\mathbf{B})+\mathbf{E}_{\mathrm{p}}(\mathbf{B})\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}_{f}}} \Rightarrow
\end{gathered}
$$

$$
\begin{gathered}
0+2 \mathrm{mgR}-\left(\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2}+\mathrm{mgR}\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}_{\mathrm{f}}}} \\
\mathrm{~W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}}=\int_{A}^{B} \overrightarrow{\mathrm{~F}}_{\mathrm{f}} \cdot \overrightarrow{\mathrm{dr}} \\
\overrightarrow{\mathrm{~F}}_{\mathrm{f}}=-\mathrm{F}_{\mathrm{f}} \overrightarrow{\mathrm{U}}_{\mathrm{T}}, \overrightarrow{\mathrm{dr}}=\mathrm{dr} \overrightarrow{\mathrm{U}}_{\mathrm{T}}=\mathrm{Rd} \theta \overrightarrow{\mathrm{U}}_{\mathrm{T}} \\
\mathrm{~W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}}=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{R} \int_{0}^{\frac{3 \pi}{2}} \mathrm{~d} \theta \Rightarrow \mathrm{~W}_{\overrightarrow{\mathrm{F}}_{\mathrm{f}}}=-\frac{3 \pi}{2} \mathrm{R} \cdot \mathrm{~F}_{\mathrm{f}} \\
\Rightarrow \mathrm{mgR}-\frac{\mathrm{m} \times 2 \mathrm{~g}(\mathbf{h}-\mathrm{R})}{2}=-\frac{3 \pi}{2} \mathrm{R} \cdot \mathrm{~F}_{\mathrm{f}} \Rightarrow \mathbf{F}_{\mathrm{f}}=\frac{2 m g}{3 \pi R}(2 \boldsymbol{R}-\boldsymbol{h})
\end{gathered}
$$

EXERCISE 09

a- The work done by the spring W_{S}.

$$
\begin{aligned}
\mathrm{W}_{\mathrm{S}}=\mathrm{W}(\overrightarrow{\mathrm{~T}})=\int_{C}^{B} \overrightarrow{\mathrm{~T}} \cdot \mathrm{dx}=-\int_{A}^{B} \mathrm{~T} \cdot \mathrm{dx}=- & \int_{A}^{B} \mathrm{Kx} . \mathrm{dx} \Rightarrow \mathrm{~W}_{\mathrm{S}}=-\frac{1}{2} k x^{2}=-\frac{1}{2} 20 \times 10^{3} \times(0.12)^{2} \\
& \Rightarrow \mathrm{~W}_{\mathrm{S}}=-144 \mathrm{~J}
\end{aligned}
$$

b- The work done by the friction force $\mathrm{W}_{\mathrm{F}_{\mathrm{f}}}$.

$$
\Delta \mathbf{E}_{\mathbf{k}}=\mathbf{E}_{\mathbf{k}}(\mathbf{B})-\mathbf{E}_{\mathbf{k}}(\mathbf{A})=\mathbf{W} \sum(\overrightarrow{\mathrm{F}})_{=} \mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{F}_{\mathrm{f}}}
$$

$\overrightarrow{\mathrm{N}}$ and $\mathrm{m} \overrightarrow{\mathrm{g}}$ do no work on the box as it moves, because they are perpendicular to the deplacement.

$$
\begin{aligned}
\Delta \mathbf{E}_{\mathbf{k}} & =\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2}-\frac{\mathrm{mV} \mathrm{~V}_{\mathrm{A}}{ }^{2}}{2}=\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{F}_{\mathrm{f}}} \\
\Rightarrow \Delta \mathbf{E}_{\mathrm{k}}=0-\frac{\mathrm{mV}_{\mathrm{A}}^{2}}{2}=\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{F}_{\mathrm{f}}} & \Rightarrow \mathrm{~W}_{\mathrm{F}_{\mathrm{f}}}=-\frac{\mathrm{mV}_{\mathrm{A}}^{2}}{2}-\mathrm{W}_{\mathrm{S}} \\
& \Rightarrow \mathrm{~W}_{\mathrm{F}_{\mathrm{f}}}=-\frac{50 \times 3^{2}}{2}-(-144) \Rightarrow \mathbf{W}_{\mathrm{F}_{\mathrm{f}}}=-\mathbf{8 1} \mathrm{J}
\end{aligned}
$$

c- The coefficient of friction between the crate and the surface.

$$
\begin{aligned}
& \mathbf{W}_{\mathbf{F}_{\mathrm{f}}}=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d}=-\mu \cdot \mathrm{N} \cdot \mathrm{~d}=-\mu \cdot \mathrm{mg} \cdot \mathrm{~d}=-81 \mathrm{~J} \\
& \quad \Rightarrow \mu=\frac{81}{50 \times 9.8 \times(0.6+0.12)} \Rightarrow \mu=\mathbf{0 . 2 2 9 6}
\end{aligned}
$$

d- The velocity of the crate as it passes again through position A after rebounding off the spring.

$$
\begin{gathered}
\Delta \mathbf{E}_{\mathbf{k}}=\frac{\mathrm{mV}_{\mathrm{A}}^{2}}{2}-\frac{\mathrm{mV}_{\mathrm{B}}^{2}}{2}=\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{F}_{\mathrm{f}}} \\
\Rightarrow \mathbf{E}_{\mathbf{k}}=\frac{\mathrm{mV}_{\mathrm{A}}^{2}}{2}-0=\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{F}_{\mathrm{f}}} \\
\Rightarrow \mathrm{~V}_{\mathrm{A}}=\sqrt{\frac{2}{\mathrm{~m}}\left(\mathrm{~W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{F}_{\mathrm{f}}}\right)}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{S}}=\mathrm{W}(\overrightarrow{\mathrm{~T}})=\int_{B}^{C} \overrightarrow{\mathrm{~T}} \cdot \overrightarrow{\mathrm{dx}}=\int_{B}^{C} \mathrm{~T} \cdot \mathrm{dx}= & \int_{B}^{C} K \mathrm{x} . \mathrm{dx} \Rightarrow \mathrm{~W}_{\mathrm{S}}=\frac{1}{2} k x^{2}=\frac{1}{2} 20 \times 10^{3} \times(0.12)^{2} \\
& \Rightarrow \mathbf{W}_{\mathbf{S}}=\mathbf{1 4 4} \mathbf{J}
\end{aligned}
$$

$$
\mathbf{W}_{\mathbf{F}_{\mathrm{f}}}=-\mathrm{F}_{\mathrm{f}} \cdot \mathrm{~d}=-\mu \cdot \mathrm{N} \cdot \mathrm{~d}=-\mu \cdot \mathrm{mg} \cdot \mathrm{~d}=-81 \mathrm{~J}
$$

$$
\Rightarrow \mathrm{V}_{\mathrm{A}}=\sqrt{\frac{2}{50}(144-81)}
$$

$$
\Rightarrow \mathbf{V}_{\mathrm{A}}=\mathbf{1 . 5 8 7} \mathrm{m} / \mathrm{s}
$$

