Physics 01: Mechanics of point particle.

Evaluation exam

EXERCISE 01: (6 pts)
Let's be: $\vec{A}=-5 \vec{\imath}-3 \vec{\jmath}+2 \vec{k}$ and $\vec{B}=-2 \vec{\jmath}-2 \vec{k}$
1- Calculate the magnitude for each vector.
2- Calculate: $\vec{A} \cdot \vec{B}$ and $\vec{A} \wedge \vec{B}$.
3- Calculate the angle between \vec{A} and \vec{B}.
4- Find the components of a vector \vec{C} that is perpendicular to \vec{B}, is in the (yoz) plane and has a magnitude of 5 units.

EXERCISE 02: (8 pts)

1- The position of a particle moving along the y-axis is given as: $y=A t^{2}-B t^{3}$, where y is measured in meters and t in seconds. Find the dimensions of A and B.
2- Cite the various frames of reference, the coordinates and unit vectors of each referential.
3-a- Define the average speed and the average velocity.
3-b- Use the following diagram to determine the average speed and the average velocity of the skier during:
$>0 \mathrm{~min}$ and 3 min .
$>1 \mathrm{~min}$ and 3 min .

EXERCISE 03: (7 pts)

The polar coordinates of a material point are $: \rho(t)=\mathrm{ae}^{\theta}, \theta=\mathrm{wt}, \mathrm{w}$: constant, a: constant
1- Write the vector position in polar coordinates.
2- Find the velocity and acceleration in polar coordinates and calculate their magnitudes.
2- Calculate the tangential acceleration and the normal acceleration.
4- Deduce the radius of curvature.
5- Calculate the curvilinear abscissa $S(t)$ as a function of time.

