# REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE 

```
Université de M'sila
Faculté des Mathématiques et de l'Informatique Département d'informatique
```



Level: 1st year of computer science
Course: ADS1
series TD/TP $\mathbf{N}^{\circ}: 06$
Academic year:2023/2024
Chapter 5 : Arrays

## Exercise 1: TD/TP

Write an algorithm with its C program that allows filling an array of N real numbers and then displays them in reverse order.

## Exercise 2: TP

Write an algorithm to find the MAX and its position in an array of N real elements.

## Exercise 3: TD

Write a C program to calculate the scalar product of two N-dimensional vectors. If $u$ is the vector of grades and $v$ is the vector of coefficients, modify the program to calculate the average.
N.B.: The scalar product of two vectors is equal to the sum of the products of their corresponding components. $\vec{u} \cdot \vec{v}=\sum u_{i} \cdot v_{i}$

## Exercise 4: TP

Write an algorithm to calculate the number of occurrences of a given element in an integer array of N elements.

## Exercise 5: TD

Write an algorithm with its C code that splits a vector T of N integers into two vectors T 1 and T 2 , containing the even and odd numbers of $T$, respectively.

## Exercise 6: ( at home)

Write an algorithm with its C program that allows filling an array of N real numbers and calculating the sum of negative numbers, the product of positive numbers, and the count of zeros.

## Exercise 7: ( at home)

Write an algorithm with its C program that converts a decimal number to an octal number using an array to store the remainders and then displays them in reverse order
Ex : 964

| 4 | 0 | 7 | 1 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

To display 1704

## Exercise 8 : ( at home)

A polynomial will be represented using an array of floating-point numbers containing its coefficients. The coefficient of degree $i$ will be found in the array element at index $i$.
For example, the polynomial $2.5+4 \mathrm{X}+8 \mathrm{X}^{\wedge} 3$ will be represented by the array $[2.5,4,0,8]$. A polynomial of degree $d$ will have a size of $d+1$.
Write an algorithm that:

- Reads the coefficients of the polynomial of degree d.
- Displays this polynomial, ignoring terms with coefficients of 0 .
- Calculates the value of the polynomial for the given value $x$ (provided by the user without using pow()).
- Calculates the derivative of this polynomial

