Mohamed Boudiaf University of Msila.

Field : Sciences of matter (SM)
1st year LMD Semester 01.

University Year 2023-2024

Physics 01: Mechanics of point particle.

Correction of the evaluation exam

EXERCISE 01: (6 pts)
Let's be: $\vec{A}=-5 \vec{\imath}-3 \vec{\jmath}+2 \vec{k}$ and $\vec{B}=-2 \vec{\jmath}-2 \vec{k}$
1- Calculation of the magnitude for each vector.
$\|\vec{A}\|=\sqrt{38}, \quad\|\vec{B}\|=2 \sqrt{2} \quad \underline{1}$
2- Calculation of $\vec{A} \cdot \vec{B}$ and $\vec{A} \wedge \vec{B}$.
$\vec{A} \cdot \vec{B}=(-5) \cdot(0)+(-3) \cdot(-2)+(2) \cdot(-2) \Rightarrow \vec{A} \cdot \vec{B}=2 \quad \underline{1}$
$\overrightarrow{\boldsymbol{A}} \wedge \overrightarrow{\boldsymbol{B}}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ -5 & -3 & 2 \\ 0 & -2 & -2\end{array}\right|=\mathbf{1 0} \overrightarrow{\boldsymbol{\imath}}-\mathbf{1 0} \overrightarrow{\boldsymbol{\jmath}}+\mathbf{1 0} \overrightarrow{\boldsymbol{k}}$
3- Calculation of the angle between \vec{A} and \vec{B}.

$$
\vec{A} \cdot \vec{B}=\boldsymbol{A} \cdot \boldsymbol{B} \cdot \cos \theta \Rightarrow \cos \theta=\frac{\vec{A} \cdot \vec{B}}{\vec{A} \cdot \boldsymbol{B}}=\frac{2}{\sqrt{38} \cdot 2 \sqrt{2}}=\frac{1}{\sqrt{38} \cdot \sqrt{2}} \Rightarrow \cos \theta=\mathbf{0} .115 \Rightarrow \theta=\mathbf{8 3} . \mathbf{4}^{\circ}
$$

4- The components of a vector \vec{C} that is perpendicular to \vec{B}, is in the (yoz) plane and has a magnitude of 5 units.
$>\vec{C}$ is in the $(\mathrm{yoz}) \Rightarrow \vec{C}=\mathbf{y}_{\mathbf{C}} \vec{J}+\mathrm{z}_{\mathrm{C}} \vec{k}$
$>\vec{C}$ is perpendicular to $\vec{B} \Rightarrow \overrightarrow{\boldsymbol{C}} \cdot \overrightarrow{\boldsymbol{B}}=\mathbf{0} \Rightarrow \mathbf{- 2} \mathbf{y}_{\mathrm{C}}-\mathbf{2} \mathbf{z}_{\mathrm{C}}=\mathbf{0} \Rightarrow \mathbf{y}_{\mathrm{C}}=-\mathbf{z}_{\mathrm{C}}$
$>\vec{C}$ has a magnitude of 5 units $\Rightarrow\|\overrightarrow{\boldsymbol{C}}\|=\sqrt{\mathbf{y}_{\mathrm{C}}{ }^{2}+\mathbf{z}_{\mathrm{C}}{ }^{2}}=\mathbf{5}$

$$
\begin{equation*}
\Rightarrow \mathbf{y}_{\mathrm{C}}=-\frac{5}{\sqrt{2}}, \mathbf{z}_{\mathrm{C}}=\frac{5}{\sqrt{2}} \text { or } \mathbf{y}_{\mathrm{C}}=\frac{5}{\sqrt{2}}, \mathbf{z}_{\mathrm{C}}=-\frac{5}{\sqrt{2}} \tag{2}
\end{equation*}
$$

EXERCISE 02: (8pts)
$1-\mathrm{y}=\mathrm{At}^{2}-\mathrm{Bt}^{3}$
The dimensions of A and B :
$\left.\Rightarrow[A]=[L] \cdot[T]^{-2},[B]=[L] \cdot[T]^{-3} \quad \underline{L}\right]=[A] \cdot[T]^{2}-[B] \cdot[T]^{3}$
2- The various coordinates systems, the coordinates and unit vectors of each referential. $\underline{\mathbf{3}}$

Reference frame	Coordinates	Unit vectors
Cartesian coordinates system	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\vec{\imath}, \vec{\jmath}, \vec{k})$
Polar coordinates system	(ρ, θ)	$\left(\vec{u}_{\rho}, \vec{u}_{\theta}\right)$
Cylindrical coordinates system	(ρ, θ, z)	$\left(\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{k}\right)$
Spherical coordinates system	$(\mathrm{r}, \theta, \Phi)$	$\left(\vec{u}_{r}, \vec{u}_{\theta}, \vec{u}_{\Phi}\right)$

3-a- Definition of the average speed, and the average velocity.
The average velocity is a vector quantity and is defined as follow: $\underline{1}$

$$
\vec{V}_{\text {avg }}=\frac{\overrightarrow{\overrightarrow{o M}_{2}}-\overrightarrow{o M_{1}}}{t_{2}-t_{1}}=\frac{\overrightarrow{\mathrm{M}_{1} \mathrm{M}_{2}}}{t_{2}-t_{1}}=\frac{\Delta \overrightarrow{\partial M}}{\Delta t}
$$

The average speed is positive scalar quantity, it's the distance traveled per unit time: $\underline{1}$

$$
S_{\text {avg }}=\frac{\text { traveled distance }}{\Delta t}
$$

3-b- Calculation of the average speed and the average velocity of the skier during:
0 min and 3 min .
If the motion is unidirectional (one direction), for example in the direction of the axis (OX), the velocity can be expressed as follow:

$$
V_{a v g}=\frac{x_{3}-x_{0}}{t_{3}-t_{0}}=\frac{\Delta x}{\Delta t}
$$

1 min and 3 min .

$$
\begin{aligned}
& >V_{\text {avg }}(1-3 \mathrm{~min})=\frac{140-180}{(3-1) \times 60}=-0.33 \mathrm{~m} / \mathrm{s} \quad \underline{\mathbf{0 . 5}} \\
& >V_{\text {avg }}(1-3 \mathrm{~min})=\frac{140+100}{(3-1) \times 60}=2 \mathrm{~m} / \mathrm{s} \quad \underline{\mathbf{0 . 5}}
\end{aligned}
$$

EXERCISE 03: (7 pts)
The polar coordinates of a material point are : $\rho(\mathrm{t})=\mathrm{ae}^{\theta}, \theta=\mathrm{wt}, \mathrm{w}$: constant, a: constant 1 - The vector position in polar coordinates.

$$
\overrightarrow{O M}=\rho \vec{u}_{\rho} \Rightarrow \overrightarrow{O M}=\mathrm{ae}^{\mathrm{wt}} \vec{u}_{\rho}
$$

2- The velocity and acceleration in polar coordinates and their magnitudes.

$$
\begin{gathered}
\vec{V}=\frac{d \overrightarrow{\mathrm{~d} M}}{d t}=\frac{\mathrm{d}\left(\mathrm{ae}^{\mathrm{wt}} \vec{u}_{\rho}\right)}{d t}=\mathrm{awe}^{\mathrm{wt}} \overrightarrow{\boldsymbol{u}}_{\rho}+\mathrm{awe}^{\mathrm{wt}} \overrightarrow{\boldsymbol{u}}_{\theta} \\
\vec{V}=\mathrm{awe}^{\mathrm{wt}}\left(\overrightarrow{\boldsymbol{u}}_{\rho}+\overrightarrow{\boldsymbol{u}}_{\theta}\right) \quad \underline{1} \\
V=\sqrt{2} \mathrm{awe}^{\mathrm{wt}} \quad \underline{0.5} \\
\vec{a}=\frac{\mathrm{d} \vec{V}}{d t}=\mathrm{aw}^{2} \mathrm{e}^{\mathrm{wt}}\left(\overrightarrow{\boldsymbol{u}}_{\rho}+\overrightarrow{\boldsymbol{u}}_{\theta}\right)+\mathrm{awe}^{\mathrm{wt}}\left(\mathrm{w} \overrightarrow{\boldsymbol{u}}_{\theta}-\mathrm{w} \overrightarrow{\boldsymbol{u}}_{\rho}\right) \\
\vec{a}=2 \mathrm{aw}^{2} \mathrm{e}^{\mathrm{wt}} \overrightarrow{\boldsymbol{u}}_{\theta} \quad \underline{1} \\
a=2 \mathrm{aw}^{2} \mathrm{e}^{\mathrm{wt}} \quad \underline{0.5}
\end{gathered}
$$

2- Calculate the tangential acceleration and the normal acceleration.

$$
\left\{\begin{array} { r l }
{ a _ { T } } & { = \frac { \mathrm { d } V } { d t } } \tag{2}\\
{ a _ { N } = \frac { V ^ { 2 } } { \mathfrak { R } } } & { = \sqrt { \mathbf { a } ^ { 2 } - \mathbf { a } _ { \mathrm { T } } ^ { 2 } } }
\end{array} \Rightarrow \left\{\begin{array}{c}
a_{T}=\sqrt{2} \mathbf{a w}^{2} \mathrm{e}^{\mathrm{wt}} \\
a_{N}=\sqrt{\left(2 \mathbf{a w}^{2} \mathbf{e}^{\mathrm{wt}}\right)^{2}-\left(\sqrt{2} \mathrm{aw}^{2} \mathrm{e}^{\mathrm{wt}}\right)^{2}}=\sqrt{2} \mathbf{a w}^{2} \mathrm{e}^{\mathrm{wt}}
\end{array}\right.\right.
$$

4- Deduce the radius of curvature.

$$
\begin{equation*}
a_{N}=\frac{V^{2}}{\Re} \Rightarrow \boldsymbol{R}=\frac{V^{2}}{a_{N}} \Rightarrow \boldsymbol{R}=\frac{\left(\mathbf{a w e}^{\mathrm{wt}} \sqrt{\mathbf{2}}\right)^{2}}{\sqrt{2} \mathrm{aw}^{2} \mathrm{e}^{\mathrm{wt}}} \Rightarrow \boldsymbol{R}=\sqrt{\mathbf{2}} \mathbf{a} \mathbf{e}^{\mathrm{wt}} \tag{0.5}
\end{equation*}
$$

5- Calculate the curvilinear abscissa $S(t)$ as a function of time.

$$
V=\frac{\mathrm{d} S}{d t} \Rightarrow \mathrm{~d} S=V \cdot d t \Rightarrow \int d S=\sqrt{2} \mathbf{a} \int \mathbf{w e}^{\mathrm{wt}} \mathbf{d t} \Rightarrow S=\sqrt{2} \mathbf{a e}^{\mathrm{wt}}+\mathbf{C}
$$

